Math, asked by AakashKumar3140, 1 month ago

.If the roots of the quadratic equation p (q - r) x + q (r − p) x + r (p − q) = 0 are real and equal , show that - + . = / .

Answers

Answered by solankisolanki194
0

Answer:

p(q−r)x

2

+q(r−p)x+r(p−q)=0

D=0∴ the root are equal

D=b

2

−4ac

⇒(q(r−p))

2

−4(p(q−r))(r(p−q)))=0

⇒q

2

(r

2

+p

2

−2pr)−4((pq−pr)(pr−qr))=0

⇒q

2

(r

2

+p

2

−2pr)−4(p

2

qr−pq

2

r−p

2

r

2

+pqr

2

)=0

⇒q

2

r

2

+p

2

q

2

−2pq

2

r−4p

2

qr+4pq

2

r+4p

2

r

2

+4pqr

2

=0

⇒q

2

r

2

+p

2

q

2

+4p

2

r

2

−4p

2

qr+2pq

2

r+4pqr

2

=0

⇒(pq+qr−2pr)

2

=0[∵(a+b+c)

2

=a

2

+b

2

+c

2

−2ab+2bc+2ac]

⇒pq+qr=2pr

Dividing by p=qr

r

1

+

p

1

=

q

2

Hence , m=2

Similar questions