Math, asked by dell65, 1 year ago

If the roots of the quadratic equation:
a {x}^{2}  + cx + c = 0
are in the ratio p:q,then show that


 \sqrt{ \frac{p}{q} }  +  \sqrt{ \frac{q}{p} }  +  \sqrt{ \frac{c}{a} }  = 0

Answers

Answered by Anonymous
91
ANSWER:
_____________________________


let \:  \alpha  \: and \:  \beta  \: be \: the \: roots \: of \: the \: given \: quadratic \: equation \\  \\
Therefore,

 \alpha  +  \beta  =  \frac{ - c}{a}  \: and \:  \alpha  \beta  =  \frac{c}{a}  \\  \\

Also,

 \frac{ \alpha }{ \beta }  =  \frac{p}{q} ..........(given) \\  \\
Therefore,

 \sqrt{ \frac{p}{q} }  +  \sqrt{ \frac{q}{p} }  +  \sqrt{ \frac{c}{a} }  =  \sqrt{ \frac{ \alpha }{ \beta } }  +  \sqrt{ \frac{ \beta }{ \alpha } }  +  \sqrt{ \alpha  \beta }  \\  \\  =  \sqrt{ \frac{ \alpha }{ \beta } }  +  \sqrt{ \frac{ \beta }{ \alpha } }  +  \sqrt{ \alpha  \beta }  \\  \\  =  \frac{ \alpha  +  \beta }{ \sqrt{ \alpha  \beta } }  +  \sqrt{ \alpha  \beta }  \\  \\  =  \frac{ \alpha  +  \beta  +  \alpha  \beta }{ \sqrt{ \alpha  \beta } }  \\  \\   =  \frac{ - c}{a}  +  \frac{c}{a} \\  -  -  -  -  -  -  -  \\   \:  \:  \:  \:  \:  \:  \:\sqrt{ \alpha  \beta }  \\  \\   = \frac{0}{ \sqrt{ \alpha  \beta } }  \\  \\  = 0 \\  \\ therefore \\   \sqrt{ \frac{p}{q} }  +  \sqrt{ \frac{q}{p} }  +  \sqrt{ \frac{c}{a} }  = 0

nethranithu: well
Answered by Anonymous
102
▶ Question :-

→ If the roots of the quadratic equation:
a {x}^{2} + cx + c = 0
are in the ratio p : q, then show that

 \sqrt{ \frac{p}{q} } + \sqrt{ \frac{q}{p} } + \sqrt{ \frac{c}{a} } = 0.


▶ Answer :-

 \sf \sqrt{ \frac{p}{q} } + \sqrt{ \frac{q}{p} } + \sqrt{ \frac{c}{a} } = 0 .


▶ Step-by-step explanation :-


➡ Given :-

→ Given quadratic equation :-  \sf a {x}^{2} + cx + c = 0 .

→ Roots of the given are in the ratio p : q .


➡ To prove :-

 \sf \sqrt{ \frac{p}{q} } + \sqrt{ \frac{q}{p} } + \sqrt{ \frac{c}{a} } = 0 .


 \huge \pink{ \mid \underline{ \overline{ \sf Solution :- }} \mid}

We have,

Roots of the given equation are p and q .


  \sf \because Sum \: of \: roots =  \frac{ - B}{A} . \\  \\  \sf \implies p + q =  \frac{ - c}{a} ......(1). \\  \\ And \\  \\  \sf \because Product \: of \: roots =  \frac{C}{A} . \\  \\  \sf  \implies pq =  \frac{c}{a} . \\  \\  \big[  \sf both \: side \: multiply \: by \:  -  . \big] \\  \\  \sf \implies  - pq =  \frac{ - c}{a} ......(2).

▶ From equation (1) and (2) , we get .

==> p + q = - pq .

==> p + q + pq = 0 .

[ Dividing both side by √(pq) . ]

 \sf \implies  \frac{p}{ \sqrt{pq} } +  \frac{q}{ \sqrt{pq} }   +  \frac{pq}{ \sqrt{pq} }  =  \frac{0}{ \sqrt{pq} } . \\  \\  \sf \implies \frac{ \cancel{ \sqrt{p}}  \times  \sqrt{p} }{  \cancel{\sqrt{p}}  \times  \sqrt{q} }  + \frac{  \cancel{\sqrt{q}}  \times  \sqrt{q} }{ \sqrt{p}  \times   \cancel{\sqrt{q} }} +  \frac{ \cancel{ \sqrt{pq}}  \times  \sqrt{pq} }{  \cancel{\sqrt{pq} } }  = 0. \\  \\  \sf \implies \sqrt{ \frac{p}{q} }  +  \sqrt{ \frac{q}{p} }  +  \sqrt{pq}  = 0. \\  \\   \boxed{ \boxed{\green{\sf  \therefore\sqrt{ \frac{p}{q} }  +  \sqrt{ \frac{q}{p} }  +  \sqrt{ \frac{c}{a} }  = 0.}}}


[ °•° pq = c/a . ]


✔✔ Hence, it is proved ✅✅.


 \huge \boxed{ \boxed{ \blue{ \mathscr{THANKS}}}}

Noah11: Serendipitous Click xD, You've a Good taste in font! Keep the good work up
Noah11: fonts*
Anonymous: Thanks a lot to @dell65, @AhseFuriex, @LovelyBarshu, @Adityachauhan21, @Noah11.
Anonymous: Awesome :)
StarGazer001: Greatly Answered ❣
Anonymous: Thanks @ShivamSinghamRajput bhai and @sanjana579.
Anonymous: nice answer buddy ✌
Anonymous: Thanks @pahadiqueen
Similar questions