Math, asked by Tanya2610, 1 year ago

If the roots of the quadratic equation x^2+px+q=0 are tan 30 degrees and tan 15 degrees then find the value of 2+q-p.

Answers

Answered by parmesanchilliwack
93

Answer:

The answer is 3.

Step-by-step explanation:

Given,

tan 30° and tan 15° are the roots of quadratic equation x² + px + q,

Thus, we can write,

tan 30^{\circ}+tan15^{\circ} = -\frac{p}{1}=-p------(1)

tan 30^{\circ}.tan 15^{\circ} = \frac{q}{1}=q-------(2)

Now, we know that,

tan (30° + 15°) = tan 45°

\frac{tan 30^{\circ}+tan 15^{\circ}}{1-tan 30^{\circ}.tan 15^{\circ}}=1

tan 30^{\circ}+tan 15^{\circ} = 1-tan 30^{\circ}.tan 15^{\circ}

From Equation (1) and (2),

-p = 1 - q

⇒ q - p = 1

Adding 2 on both sides,

We get,

2 + q - p = 3

Answered by mysticd
45

Answer:

Value of

q-p+2=3

Explanation:

Given

Roots of quadratic equation +px+q=0 are tan30 and tan15.

Compare this with

ax²+bx+c=0, we get

a = 1, b = p , c = q

i) Sum of the zeroes = \frac{-b}{a}

tan30+tan15=\frac{-p}{1} ---(1)

ii) Product of the zeroes = \frac{c}{a}

tan30tan15=\frac{q}{1} ----(2)

_______________________

We know that,

\boxed {tan(A+B)=\frac{tanA+tanB}{1-tanAtanB}}

_______________________

Here,

 tan(30+15)=\frac{tan30+tan15}{1-tan30tan15}

\implies tan45=\frac{tan30+tan15}{1-tan30tan15}

\implies 1=\frac{-p}{1-q} /* From (1)&(2) */

\implies 1-q = -p

\implies 1 = q-p

Add 2 both sides of the equation, we get

\implies 1+ 2 = q-p+2

\implies 3 = q-p+2

Therefore,

Value of

q-p+2=3

••••

Similar questions