if the roots of the quadratic equation:
(x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a)=0
are equal, then show that a=b=c
Answers
Answer:
(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0.
(x-a)(x-b)=x²-(a+b)x+ab. (Because (x-a)(x-b)=x²-(a+b)x+ab where x=x, a=a & b=b).
(x-b)(x-c)=x²-(b+c)x+bc. (Because (x-a)(x-b)=x²-(a+b)x+ab where x=x, a=b & b=c).
(x-c)(x-a)=x²-(c+a)x+ca. (Because (x-a)(x-b)=x²-(a+b)x+ab where x=x, a=c & b=a).
(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=(x²-(a+b)x+ab)+(x²-(b+c)x+bc)+(x²-(c+a)x+ca). (Because (x-a)(x-b)=x²-(a+b)x+ab, (x-b)(x-c)=x²-(b+c)x+bc & (x-c)(x-a)=x²-(c+a)x+ca).
3x²-2x(a+b+c)+(ab+bc+ca).
Let D be discriminant.
D=4(a+b+c)²−12(ab+bc+ca).
=4[(a+b+c)²−3(ab+bc+ca)].
=2[2a²+2b²+2c²−2ab−2bc−2ca].
=2[(a−b)²+(b−c)²+(c−a)²].
If D=0, then.
(a−b)²+(b−c)²+(c−a)²=0.
a−b=0;b=c;c=a.
a=b.
(or).
a=b=c.
I think this is your answer.
Given quadratic equation is
So, on comparing with Ax² + Bx + C = 0, we get
As it is given that, equation has real and equal roots.
can be rewritten as
Concept Used :-
Nature of roots :-
Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.
If Discriminant, D > 0, then roots of the equation are real and unequal.
If Discriminant, D = 0, then roots of the equation are real and equal.
If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.
Where,
Discriminant, D = b² - 4ac