If the roots of the quadratic equations (a^2+b^2)x^2-2(ac+bd)x+c^2+d^2=0 are equal. Prove that a/b=c/d
Answers
Question
If the roots of the quadratic equations (a² + b²)x² -2(ac + bd)x + (c² + d²) = 0 are equal. Prove that a/b = c/d
To Prove
a/b = c/d
Proof
Given quadratic equation is, (a² + b²)x² -2(ac + bd)x + (c² + d²) = 0
The roots of the above quadratic equation are equal.
If roots are equal then, D = b² - 4ac = 0
We have, a = (a² + b²), b = -2(ac + bd) and c = (c² + d²)
Substitute these values in the above formula
→ [-2(ac + bd)]² - 4[(a² + b²)(c² + d²)] = 0
→ 4(a²c² + b²d² + 2ac.bd) - 4(a²c² + a²d² + b²c² + b²d²) = 0
Used identity: (a + b)² = a² + b² + 2ab
→ 4(a²c² + b²d² + 2ac.bd) - 4(a²c² + a²d² + b²c² + b²d²) = 0
Take 4 as common
→ 4[(a²c² + b²d² + 2ac.bd) - (a²c² + a²d² + b²c² + b²d²)] = 0
→ (a²c² + b²d² + 2ac.bd) - (a²c² + a²d² + b²c² + b²d²) = 0
→ a²c² + b²d² + 2ac.bd - a²c² - a²d² - b²c² - b²d² = 0
→ a²c² - a²c² + b²d² - b²d² + 2ac.bd - a²d² - b²c² = 0
a²c² - a²c² + b²d² - b²d², will cancel out
We left with
→ 2ac.bd - a²d² - b²c² = 0
Take ' - ' as common
→ -(-2ac.bd + a²d² + b²c²) = 0
→ - 2ac.bd + a²d² + b²c² = 0
→ (ad - bc)² = 0
Used identity: (a - b)² = a² + b² - 2ab
→ ad - bc = 0
→ ad = bc
→ a/b = c/d
Hence, proved
||✪✪ QUESTION ✪✪||
If the roots of the quadratic equations (a^2+b^2)x^2-2(ac+bd)x+c^2+d^2=0 are equal. Prove that a/b=c/d ?
|| ★★ CONCEPT USED ★★ ||
If A•x^2 + B•x + C = 0 ,is any quadratic equation,
then its discriminant is given by;
D = B^2 - 4•A•C
• If D = 0 , then the given quadratic equation has real and equal roots.
• If D > 0 , then the given quadratic equation has real and distinct roots.
• If D < 0 , then the given quadratic equation has unreal (imaginary) roots...
|| ✰✰ ANSWER ✰✰ ||
Given Equation is :- (a^2+b^2)x^2-2(ac+bd)x+c^2+d^2=0
Here , we have ,
⟿ A = (a² + b²)
⟿ B = -(2)[ac+bd]
⟿ C = (c² + d²)
Since, Roots are Equal , D = 0 ,
➪ B² - 4AC = 0
Putting values we get :-
➼ [-2(ac+bd)]² - 4 * (a²+b²) * (c²+d²) = 0
➼ 4 [ac + bd)²] - 4 * (a²+b²) * (c²+d²) = 0
➼ 4[a²c² + b²d² + 2abcd ] - 4 [ a²c² + a²d² + b²c² + b²d²] = 0
➼ 4 [a²c² -a²c² + b²d² - b²d² + 2abcd -a²d² - b²c²] = 0
➼ 4 [ 2abcd -a²d² - b²c²] = 0
Taking 4 in RHS side, and Taking (-1) Common From LHS,
➼ a²d² + b²c² - 2abcd = 0
Comparing it with [a² + b² - 2ab = (a-b)² ] , we get,
➼ (ad - bc)² = 0
➼ ad - bc = 0
➼ ad = bc