Math, asked by nandanakannan, 3 months ago

if the roots of the quadratic polynomial p(q-r)x2+q(r-p)x+r(p-q)=0 are equal. Then show that 1/p+1/r=2/q​

Answers

Answered by prabhakardeva657
41

Questions ⤵

if the roots of the quadratic polynomial p(q-r)x2+q(r-p)x+r(p-q)=0 are equal. Then show that 1/p+1/r=2/q

sᴏʟᴜᴛɪᴏɴ ⤵

p(q - r)x  {}^{2}  + q(r - p)x + r(p - q) = 0

D = 0

so, the root are equal

D =

b {}^{2}  - 4ac

(q(r - p))x {}^{2}  - 4(p(q - r))(r(p - q)) = 0 \\ q {}^{2} (r {}^{2}  + p {}^{2}  - 2pr) - 4((pq - pr)(pr - qr)) = 0 \\ q {}^{2} (r {}^{2}  + p {}^{2}  - 2pr) - 4(p {}^{2} q r - pq {}^{2} r - p {}^{2} r {}^{2}  + pqr {}^{2} ) = 0 \\ q {}^{2} r {}^{2}   + q {}^{2}  p {}^{2} q {}^ -2 pq {}^{2} r - 4p {}^{2} qr + 4pq {}^{2} r + 4p {}^{2} r {}^{2}  +  4pqr {}^{2}  = 0 \\ q {}^{2} r {}^{2}  + p {}^{2} q {}^{2}  + 4p {}^{2} r {}^{2}  - 4p  {}^{2} q{}^{} r + 2pq {}^{2} r {}^{}  + 4pqr {}^{2}  = 0 \\ (pq + qr - 2pr) {}^{2}  = 0  \:  \: ((a + b + c)  {}^{2} = a {}^{2}  + b {}^{2}  + c {}^{2}  - 2ab + 2bc + 2ac) \\ pq + qr = 2pr \\ dividing \: by \: p = qr  \\ 1 \div r + 1 \div p = 2 \div q

hence, m = 2

Answer = 2

Mark as brainliest

Similar questions