Math, asked by Pratheeka123, 10 months ago

If the roots of x^2 -bx/ax-c = k-1/k+1 are numerically equal and opposite in sign then k=?​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\dfrac{x^2-bx}{ax-c}=\dfrac{k-1}{k+1}

\textbf{to find:}

\text{The value of k if the roots are numerically equal and opposite in sign}

\textbf{Solution:}

\text{Consider,}

\dfrac{x^2-bx}{ax-c}=\dfrac{k-1}{k+1}

x^2-bx=(\dfrac{k-1}{k+1})(ax-c)

x^2-bx=a(\dfrac{k-1}{k+1})x-c(\dfrac{k-1}{k+1})

x^2-(b+a(\dfrac{k-1}{k+1}))x+c(\dfrac{k-1}{k+1})=0

\text{Since the roots are numerically equal and opposite in sign, we have}

\textbf{Sum of the roots}=0

\dfrac{-\text{ocoefficient of $x$}}{\text{ocoefficient of $x^2$}}=0

\implies\,b+a(\dfrac{k-1}{k+1})=0

\implies\,b(k+1)+a(k-1)=0

\implies\,bk+b+ak-a=0

\implies\,k(a+b)=a-b

\implies\bf\,k=\dfrac{a-b}{a+b}

\therefore\textbf{The value of k is $\bf\dfrac{a-b}{a+b}$}

Answered by codiepienagoya
2

Given:

\bold{\frac{x^2 -bx}{ax-c} =\frac{k-1}{k+1}}

To find:

k=?

Solution:

\to \frac{x^2 -bx}{ax-c} =\frac{k-1}{k+1} .....(i)

cross multiplication of the above equation:

\to (x^2 -bx)(k+1) =(k-1)(ax-c)\\\\\to kx^2 +x^2-bkx-bx =akx-ck -ax +c\\\\\to kx^2 +x^2-bkx-bx -akx+ck +ax -c=0\\\\\to x^2(k +1)- bkx-bx -akx+ax +ck-c=0\\\\\to x^2(k +1)-x( bk+b+ak-a) +ck-c=0\\\\

compare the value with the standard equation:

\to ax^2+bx+c=0

\to a= k+1\\\\\to b= -(bk+b+ak-a)\\\\\to c= ck-c

In the equation root is equal but in opposite sign then:

if \alpha is root then:

\to  \alpha +(- \alpha)=  \frac{-b}{a}

\to \alpha -\alpha =\frac{-(-(bk+b+ak-a))}{k+1}\\\\\to 0 =\frac{(bk+b+ak-a)}{k+1}\\\\\to (bk+b+ak-a)=0\\\\\to bk+ak= a-b\\\\\to k(a+b)= a-b\\\\\to \boxed{k= \frac{(a-b)}{(a+b)}}\\\\

Similar questions