Math, asked by maligireddyphanidhar, 6 months ago

If the roots of
x4 - 10x? +37x2 - 60x +36=0 are
a,a,ß,ß,(a<b), then 2a +3B-203=
|EAM 18 TS]
C​

Answers

Answered by amansharma264
6

EXPLANATION.

Roots : x⁴ - 10x³ + 37x² - 60x + 36 = 0.

⇒ α, α, β, β (α < β).

As we know that,

Sum of the zeroes of the biquadratic polynomial.

⇒ α + α + β + β = - b/a.

⇒ α + α + β + β = -(-10)/1 = 10.

⇒ 2α + 2β = 10.

⇒ α + β = 5. - - - - - (1).

⇒ α = 5 - β. - - - - - (1).

Products of the zeroes of the biquadratic polynomial.

⇒ (α)(α)(β)(β) = e/a.

⇒ α x α x β x β = 36.

⇒ α²β² = 36.

⇒ (αβ)² = (6)².

⇒ αβ = 6.

Put the values of α = 5 - β in the equation, we get.

⇒ (5 - β)(β) = 6.

⇒ 5β - β² = 6.

⇒ 6 + β² - 5β = 0.

⇒ β² - 5β + 6 = 0.

Factorizes the equation into middle term splits, we get.

⇒ β² - 3β - 2β + 6 = 0.

⇒ β(β - 3) - 2(β - 3) = 0.

⇒ (β - 2)(β - 3) = 0.

⇒ β = 2   and   β = 3.

Put the values of β in the equation (1), we get.

⇒ α = 5 - β.

Put the value of β = 2 in the equation, we get.

⇒ α = 5 - 2.

⇒ α = 3.

Put the value of β = 3 in the equation, we get.

⇒ α = 5 - 3.

⇒ α = 2.

⇒ α = 2  and  β = 3.

⇒ α = 3  and  β = 2.

It is clearly given that,

⇒ (α < β).

So, we take.

⇒ α = 2  and  β = 3.

To find :

⇒ 2α + 3β - 2αβ.

Put the values in the equation, we get.

⇒ 2(2) + 3(3) - 2(2)(3).

⇒ 4 + 9 - 12.

⇒ 13 - 12 = 1.

2α + 3β - 2αβ = 1.

                                                                                                                   

MORE INFORMATION.

(1) = If D₁ + D₂ ≥ 0 : At least one of the equation has real roots.

(2) = If D₁ + D₂ < 0 : At least one of the equation has imaginary roots.

(3) = If D₁. D₂ < 0 : One equation has real and distinct roots and other has imaginary roots.

Answered by TrustedAnswerer19
18

Answer:

→ Given, the quartic polynomial

 \rm \:  {x}^{4}  - 10 {x}^{3}  + 37 {x}^{2}  - 60x + 36 = 0

And its zeroes are :

 \alpha , \alpha , \beta , \beta  \:  \:  \sf \: \:  \:  \:  where \:  \:  \:  \alpha  &lt;  \beta

→ We have to find :

⇨ The value of :

1) [ I think + seeing others answer ! ]

2 \alpha  + 3 \beta  - 2 \alpha  \beta

or

2) [according to the question ]

2 \alpha  + 3 \beta  - 203

Solution :

We know that,

 \rm \:If\:\:\: a {x}^{4}  + b {x}^{3}  + c {x}^{2}  + dx + e \:  \: is \: a \:  \\  \sf \: quartic \:  polynomial \: then, \:

 \small{ \green{ \sf \: sum \: of \: zeroes \: of \: quartic  \: polynomial \:  =  -  \frac{coefficient \: of \:  {x}^{3} }{coefficient \: of \:  {x}^{4} } }}

and

 \pink{ \sf \: product \: of \: zeroes \:  =  \frac{constant \: term}{coefficient \: of \:  {x}^{4} } }

According to the question,

Sum of zeroes :

 \orange{ \boxed{ \boxed{ \begin{array}{cc} \alpha  +  \alpha  +  \beta  +  \beta  =  -  \frac{ - 10}{1}   \\  \\  =  &gt; 2 \alpha  + 2 \beta  = 10 \\  \\  =  &gt; 2( \alpha  +  \beta ) = 10 \\  \\  =  &gt;  \alpha  +  \beta  = 5  \\  \\  =  &gt;   \alpha  = 5 -  \beta \:  \:  \:  -  -  - (1)\end{array}}}}

and

product of zeroes :

 \orange{ \boxed{ \boxed{ \begin{array}{cc} \alpha  \alpha  \beta  \beta  =  \frac{36}{1}  \\  \\  =  &gt;  { \alpha }^{2}  { \beta }^{2}  = 36 \\  \\  =  &gt;  \alpha  \beta  = 6 \:  \:  \:  \:  -  -  - (2)\end{array}}}}

Now, from eqn(1) and enq(2)

\pink{ \boxed{ \boxed{ \begin{array}{cc} (5 -  \beta ) \beta  = 6 \\  \\  =  &gt; 5  \beta -  { \beta }^{2}  = 6 \\  \\  =  &gt;  { \beta }^{2}  - 5 \beta  + 6 = 0 \\  \\  =  &gt;  { \beta }^{2}  - 3 \beta   - 2 \beta  + 6 = 0 \\  \\  =  &gt;  \beta ( \beta  - 3) - 2( \beta  - 3) = 0 \\  \\  =  &gt; ( \beta  - 3)( \beta  - 2) = 0 \\  \\  \therefore \:  \beta  = 2 \: or \: 3\end{array}}}}

putting the value of ß in eqn(1)

 \alpha  = 5 - 2 = 3 \:  \:  \sf \: when \:  \beta  = 2 \\  \\  \bf \: and \\  \\   \alpha  = 5 - 3 = 2 \:  \:  \:  \sf \: when \:  \beta  = 3 \\  \\  \therefore \:  \alpha  = 2 \: or \: 3

But in our condition,

 \alpha  = 2 \:  \: and \:  \beta  = 3 \:  \:  \{ \because \:  \alpha  &lt;  \beta  \}

Now,

1)

2 \alpha  + 3 \beta  - 2 \alpha  \beta  \\  \\  = 2 \times 2  +  3 \times 3 - 2 \times 2 \times 3 \\  \\  = 4 + 9 - 12 \\  \\  = 13 - 12 \\  \\  = 1

Or

2)

2 \alpha  + 3 \beta  - 203 \\  \\  = 2 \times 2 + 3 \times 3 - 203 \\  \\  = 4 + 9 - 203 \\  \\  =  - 190

Similar questions