Math, asked by parthshrikhande1, 10 months ago

if the sector of a circle with radius 10 cm with central angle is 18° then find the area of the sector (π=3.14)​

Answers

Answered by sailakshmi774
3

Radius of the circle = 10cm

Central angle is 18°

Area of sector =

area \: ofsector =  \frac{x}{360}  \times \pi \times r {}^{2}

=

 \frac{18}{360}   \times 3.14 \times 100

=78.57

Hope this helps you

Please mark me as brainliest

Answered by Cynefin
31

✰Answer✰

☛Given:

  • Radius= 10cm
  • Central angle of sector=18°

☛To find:

  • Area of the sector.

✰Formula used✰

Area of sector

 \large{ \sf{ \boxed{ =  \frac{ \theta \: }{360} \times \pi {r}^{2}  }}}

By using formula,

 \large{ \sf{ =  \frac{18}{360}  \times 3.14 \times  {10}^{2} }} \:  \: cm {}^{2} \\  \\  \large{ \sf{ = \cancel{ \frac{18}{360 \:  \: \: \cancel{ 20}}}   \times 3.14 \times \cancel{ 100} \:  \: 5}} \:  {cm}^{2}  \\  \\  \large{ \sf{  = 3.14 \times 5 \: }}  \:  {cm}^{2}  \\  \\  \large{ \sf{ \boxed{ \purple{ = 15.70 \:  {cm}^{2} }}}}

So Final Answer

 \large{ \boxed{ \red{ \sf{area \: of \: sector = 15.70 \:  {cm}^{2} }}}}

Related Concept

 \large{ \sf{ \underline{ \green{sector \: of \: circle}}}}

☛A sector is a part of circle formed by an arc and two radiis. A shape of a sector can be compared with a slice of pie or pizza.

☛A sector divides the circle into two regions known as Major sector and Minor sector.

In a circle with radius and centre O , Let a sector is there with angle theta. Then we can find the area of sector by unitary method.

 \large{ \sf{ \rightarrow \: we \: know \: area \: of \: circle = \pi {r}^{2} }} \\  \\  \large{ \sf{we \: can \: say \: it \: is \: a \: sector \: of \:angle 360}} \\  \\  \large{ \sf{ \rightarrow \: when \: the \: angle \: is \: 1 \: then \: area \: of \: sector}} \\  \\  \large{ \sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{\pi {r}^{2} }{360} }} \\  \\  \large{ \sf{ \rightarrow \: if \: angle \: would \: be \:  \theta \: then \: area \: of \: sector}} \\  \\  \large{ \sf{ \boxed{ \red{ =  \frac{ \theta}{360}  \times \pi {r}^{2} }}}} \\  \\  \large{ \sf{ \therefore{required \: formula}}}

Attachments:
Similar questions