Math, asked by seemamishra610, 6 months ago

If the selling price of 20 articles is equal to the cost price of 23 articles, find the loss or gain percent for each article.​

Answers

Answered by Saby123
11

Solution :

The selling price of 20 articles is equal to the cost price of 23 articles.

Let this be equal to k

Selling price of 1 article is (k/20)

Cost price of 1 article is (k/23)

It is obvious that the cost price is lesser than the selling price.

So, it's a profit

Profit per article

>> (k/20) - (k/23)

>> 3k/460

Profit percentage

>> (3k/460)/(k/23) × 100%

>> (3k/460) × (23/k) × 100%

>> (3/20) × 100%

>> 15%.

Answer : The overall gain percentage is 15% .

 \boxed{\begin{minipage}{5cm}\bigstar$\:\underline{\textbf{Profit and Loss Formulas :}}\\\\ \\ \sf {\textcircled{\footnotesize\textsf{1}}} \:S.P. =$\sf \bigg\lgroup\dfrac{100 + Profit \%}{100}\bigg\rgroup \times 100$\\\\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:C.P. = $\sf \dfrac{S.P. \times 100}{100 + Profit \%}$\\\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Profit = $\sf \dfrac{Profit \% \times C.P.}{100}$\\\\\\ \sf{\textcircled{\footnotesize\textsf{4}}} \: \:Profit (gain) = S.P. - C.P. \\\\\\\sf{\textcircled{\footnotesize\textsf{5}}} \: \:$\sf Profit \% = \dfrac{Profit}{C.P.} \times 100$\end{minipage}}

Answered by Anonymous
18

 \color{teal} \underbrace{ \bf Given \:  Information :-}

  • Selling price of 20 articles and cost price of 23 articles are equal

 \color{maroon} \underbrace{ \bf To \:  Find :-}

  • The loss or gain percent per articles

\bf\color{magenta}{\underbrace  { Formula  \: Used : - }}

 \qquad \bull \:  \:  \underline{ \boxed {\sf Profit \: \% =  \frac{profit}{cost \: price}  \times 100}}

 \bf \color{orange} \underbrace{Solution :-}

Let the price of each article be k. Therfore, according to the provided information, we get :-

 \bull \:  \sf Cost \:  Price  \: of \: each \: article =  \dfrac{k}{23}

 \bull    \: \sf  Selling  \: Price  \: of  \: each  \: article = \dfrac{k}{20}

Now, here we see that, the deal is of profit i.e. Selling price is more than cost price. Therefore it's a profit. Thus :-

 \sf  : \longrightarrow profit =  \dfrac{k}{20}   -  \dfrac{k}{23} \:  \:  \:   \\  \\ \sf  : \longrightarrow profit =  \frac{23k - 20k}{460}  \\  \\\sf  : \longrightarrow profit = \frac{3k}{460}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Therefore now using the formula for profit percent. We have :-

\sf  : \longrightarrow profit \:  \% \: = \dfrac{ \dfrac{3k}{460} }{ \dfrac{k}{23} }  \times 100  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf  : \longrightarrow profit \:  \% \: = \frac{3k}{460}  \times  \frac{23}{k} \times 100  \\  \\ \sf  : \longrightarrow profit \:  \% \: = \frac{ \green{ \cancel{3k}}}{ \blue{ \cancel{460}}  }  \times  \frac {  \blue{\cancel{23}}}{ \green{ \cancel{k} }}   \times 100 \\  \\ \sf  : \longrightarrow profit \:  \% \: = \frac{3}{ \red{ \cancel{20}  }}\times  \red{\cancel{ 100}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf  : \longrightarrow profit \:  \% \: =3 \times 5 = 15 \: \% \:  \:  \:  \:  \:  \:  \:  \:

Similar questions