if the seventh term of an APis 1/9 and its ninth term is 1/7 ,find its(63)rd term
Answers
Answer:
The 63rd term of the AP is 1.
Step-by-step-explanation:
For an AP,
- t₇ = 1 / 9
- t₉ = 1 / 7
We have to find the 63rd term of AP.
We know that,
tₙ = a + ( n - 1 ) * d
⇒ t₇ = a + ( 7 - 1 ) * d
⇒ 1 / 9 = a + 6d
⇒ a = ( 1 / 9 ) - 6d
⇒ a = ( 1 - 54d ) / 9 - - - ( 1 )
Also,
t₉ = a + ( 9 - 1 ) * d
⇒ 1 / 7 = a + 8d
⇒ a + 8d = 1 / 7
⇒ [ ( 1 - 54d ) / 9 ] + 8d = 1 / 7 - - - [ From ( 1 ) ]
⇒ ( 1 - 54d + 72d ) / 9 = 1 / 7
⇒ 1 + 18d = 9 / 7
⇒ 18d = ( 9 / 7 ) - 1
⇒ 18d = ( 9 - 7 ) / 7
⇒ 18d = 2 / 7
⇒ d = 2 / 7 * 1 / 18
⇒ d = 1 / 7 * 1 / 9
⇒ d = 1 / 63
By substituting d = 1 / 63 in equation ( 1 ),
a = ( 1 - 54d ) / 9 - - - ( 1 )
⇒ a = [ 1 - 54 * ( 1 / 63 ) ] / 9
⇒ a = [ 1 - ( 6 / 7 ) ] / 9
⇒ a = [ ( 7 - 6 ) / 7 ] / 9
⇒ a = ( 1 / 7 ) / 9
⇒ a = ( 1 / 7 ) * ( 1 / 9 )
⇒ a = 1 / 63
Now,
t₆₃ = a + ( 63 - 1 ) * d
⇒ t₆₃ = ( 1 / 63 ) + 62 * ( 1 / 63 )
⇒ t₆₃ = ( 1 / 63 ) + ( 62 / 63 )
⇒ t₆₃ = ( 1 + 62 ) / 63
⇒ t₆₃ = 63 / 63
⇒ t₆₃ = 1
∴ The 63rd term of the AP is 1.