Math, asked by pbalachennaiah1, 10 months ago

If the shadowofa tower is√3 timew height, then find the
angleof the sun's altitude?​

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Angle\:of\:elevation=30\degree}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Shadow \: of \: tower =  \sqrt{3}  \: times \: height \: of \: tower \\  \\  \red{\underline \bold{To \: Find  :}} \\  \tt:  \implies Angle \: of  \: sun  \: altitude= ?

• According to given question :

 \tt \circ \: let \: height \: of \: tower \: be \: x \\  \\  \tt \circ \: length \: of \: shadow =  \sqrt{3}  x \\  \\  \tt \circ \: let \:  \alpha  \: be \: the \: angle \: of \:elevation \: of \: tower \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  tan \:  \alpha  =  \frac{p}{b}  \\  \\ \tt :  \implies tan \:  \alpha  =  \frac{height \: of \: tower}{length \: of \: shadow}  \\  \\ \tt :  \implies tan \:  \alpha  =  \frac{ x }{ \sqrt{3}x }  \\  \\ \tt :  \implies tan \:  \alpha  = \frac{1}{ \sqrt{3} }  \\  \\ \tt :  \implies tan \:  \alpha  =tan \: 30 \degree \\  \\  \green{\tt :  \implies  \alpha  =30 \degree} \\  \\   \green{\tt  \therefore Angle \: of \: elevation \: of \: tower \: is \: 30 \degree}

Attachments:
Answered by AdorableMe
13

GIVEN :-

The shadow of a tower is √3 times the height of the tower.

TO FIND :-

The angle of Sun's altitude (the angle of elevation).

SOLUTION :-

Let the height of the tower be x.

Then the length of the shadow of the tower = √3x.

(AB represents the tower and BC represents its shadow)

We know,

tanθ = Perpendicular/Base

⇒tanθ = x/√3x

⇒tanθ = 1/√3

⇒tanθ = tan 30°

⇒θ = 30°

∴ Therefore, the angle of Sun's altitude is 30°.

Attachments:
Similar questions