Math, asked by yashicagkarmalkar, 4 months ago

If the side of a square is doubled, how many times the perimeter of the first square will that of the new square be?​

Answers

Answered by ImperialGladiator
4

{\blue{\underline{\underline{\purple{\textsf{\textbf{Answer : }}}}}}}

➙The perimeter of the new square will be 2 times the original square

{\blue{\underline{\underline{\purple{\textsf{\textbf{Step-by-step explanation: }}}}}}}

Question says that, if the side of a square is doubled find that how many times the perimeter of the square will be that of the new square be.

________________________________

Step 1 : Finding the perimeter of the square :

Let's assume, the side of the square as x \: \sf units

Perimeter of a square is given by :

4 × each side

→ 4 × x

4x \: \sf units

________________________________

Step 2 : Finding the perimeter after doubling the each side of the square :

The side of the square doubles

So, the each side now will be :

\to 2x

Perimeter of the new square :

\to 2x \times 4

\to 8x \sf units.

________________________________

Step 3 : On comparing the perimeters :

The perimeter increased :

\to \dfrac{p_2}{p_1}

  • p_1 is the perimeter of the original square.
  • p_2 is the perimeter of the new square.

So,

\to \dfrac{8x}{4x}

\to 2 \sf units

{ \underline{ \sf{ \therefore{The \: perimeter \:is \: 2 \: times \: the \: perimeter \: of \: the \: first \: square}}}}

____________________

Answered by anshu24497
3

 \huge \mathfrak{ \blue{An}} \mathfrak{ \purple{sw}} \mathfrak{ \pink{er}}

The perimeter of the new square will be 2 times the original square.

 \large \mathfrak{ \orange{Explanation : }}

{ \green{\textsf {\textbf{Step 1 : }}}}

Finding the perimeter of the square :

Let's assume, the side of the square as  x \: \sf units

Perimeter of a square is given by :

→ 4 × each side

→ 4 × xx

→  4x \: \sf units

_____________________________

{ \green{ \textsf{ \textbf{Step \: 2  : }}}}

Finding the perimeter after doubling the each side of the square :

The side of the square doubles.

So, the each side now will be :

→2x

Perimeter of the new square :

→2x × 4

\to 8x \sf units

_____________________________

{\green{\textsf{\textbf{Step 3 : }}}}

On comparing the perimeters :

The perimeter increased :

\to \dfrac{p_2}{p_1}

  • p_1p1 is the perimeter of the original square.
  • p_2p2 is the perimeter of the new square.

So,

\to \dfrac{8x}{4x}

\to 2 \sf units

{\underline{ \sf{\red{ \therefore{The \: perimeter \:is \: 2 \: times \: the \: perimeter \: of \: the \: first \: square}}}}}

_____________________________

Similar questions