Math, asked by selva99, 1 year ago

if the sides of a cubic box are increased by 1, 2, 3 units respectively to form a cuboid then the volume is increased by 52 cubic units find the volume of the cuboid ​

Answers

Answered by chbilalakbar
4

Answer:

x = 2    

Step-by-step explanation:

Let the side of cubic box = x units

Then Volume of Cubic box = x³ cube units

Now

After increase 1 units first side becomes = x + 1

After increase 2 units second side becomes = x + 2

After increase 3 units third side becomes = x + 3

According to formula of volume and given volume in question.

           Volume of new cuboid = (x + 1)(x + 2)(x + 3) = x³ + 52

⇒                  (x + 1)(x + 2)(x + 3) = x³ + 52

⇒          (x² + 1x + 2x + 2)(x + 3) = x³ + 52

⇒                 (x² + 3x + 2)(x + 3) = x³ + 52

⇒  x³ + 3x² + 3x² + 9x + 2x + 6 = x³ + 52

⇒     x³ - x³ + 6x² + 11x + 6 - 52 = 0

⇒                         6x² + 11x - 46 = 0

⇒               6x² + 23x - 12x - 46 = 0  

⇒           x(6x + 23) - 2(6x + 23) = 0

⇒                         (6x +23)(x - 2) = 0

⇒          6x + 23 = 0           or     x - 2 = 0

⇒                  6x = -23        or           x = 2

⇒                    x = -23/6     or           x = 2

Since length can not be negative

So

x = 2    

Answered by gayu369369
3

Answer:

Step-by-step explanation:

Let the side of cubic box = x units

Then Volume of Cubic box = x³ cube units

Now

After increase 1 units first side becomes = x + 1

After increase 2 units second side becomes = x + 2

After increase 3 units third side becomes = x + 3

According to formula of volume and given volume in question.

           Volume of new cuboid = (x + 1)(x + 2)(x + 3) = x³ + 52

⇒                  (x + 1)(x + 2)(x + 3) = x³ + 52

⇒          (x² + 1x + 2x + 2)(x + 3) = x³ + 52

⇒                 (x² + 3x + 2)(x + 3) = x³ + 52

⇒  x³ + 3x² + 3x² + 9x + 2x + 6 = x³ + 52

⇒     x³ - x³ + 6x² + 11x + 6 - 52 = 0

⇒                         6x² + 11x - 46 = 0

⇒               6x² + 23x - 12x - 46 = 0  

⇒           x(6x + 23) - 2(6x + 23) = 0

⇒                         (6x +23)(x - 2) = 0

⇒          6x + 23 = 0           or     x - 2 = 0

⇒                  6x = -23        or           x = 2

⇒                    x = -23/6     or           x = 2

Since length can not be negative

So

x = 2  

Volume of the cuboid = lbh

= 2×2×2=8 cubic units

Volume of the cuboid is 8 cubic units

Similar questions