Math, asked by solankem5286, 9 months ago

If the sides of a square are increased by x% find the percentage increase in its area

Answers

Answered by shadowsabers03
3

Let us have a square of side \displaystyle\sf {a} unit so that it's area will be \displaystyle\sf {A=a^2} unit².

If the sides are increased by \displaystyle\sf{x\%,} length of new side becomes,

\displaystyle\sf{\longrightarrow a'=a+\dfrac {ax}{100}}

\displaystyle\sf{\longrightarrow a'=a\left (1+\dfrac {x}{100}\right)}

And then area will be,

\displaystyle\sf{\longrightarrow A'=(a')^2}

\displaystyle\sf{\longrightarrow A'=a^2\left (1+\dfrac {x}{100}\right)^2}

\displaystyle\sf{\longrightarrow A'=a^2\left (1+\dfrac {2x}{100}+\dfrac {x^2}{10000}\right)}

Increase in area is,

\displaystyle\sf{\longrightarrow \Delta A=A'-A}

\displaystyle\sf{\longrightarrow\Delta A=a^2\left (1+\dfrac {2x}{100}+\dfrac {x^2}{10000}\right)-a^2}

\displaystyle\sf{\longrightarrow\Delta A=a^2\left (\dfrac {2x}{100}+\dfrac {x^2}{10000}\right)}

\displaystyle\sf{\longrightarrow\Delta A=A\left (\dfrac {2x}{100}+\dfrac {x^2}{10000}\right)}

\displaystyle\sf{\longrightarrow\dfrac {\Delta A}{A}=\dfrac {2x}{100}+\dfrac {x^2}{10000}}

Then percentage increase in area,

\displaystyle\sf{\longrightarrow\delta A=\dfrac {\Delta A}{A}\times 100}

\displaystyle\sf{\longrightarrow\delta A=\left (\dfrac {2x}{100}+\dfrac {x^2}{10000}\right)100}

\displaystyle\sf{\longrightarrow\underline {\underline {\delta A=\left (2x+\dfrac {x^2}{100}\right)\%}}}

Similar questions