Math, asked by NitinMNRC, 9 hours ago

If the sides of a triangle are 26 cm, 28 cm and 30 cm. Find the area of triangle.

For Class 9​

Answers

Answered by Anonymous
28

Given :

  • Side 1 of Triangle = 26 cm
  • Side 2 of Triangle = 28 cm
  • Side 3 of Triangle = 30 cm

\\ \rule{200pt}{3pt}

To Find :

  • Area of the Triangle = ?

 \\ \rule{200pt}{3pt}

Solution :

\blue{❒} Formula Used :

\large{\pink{\bigstar \: \: {\underbrace{\underline{\purple{\sf{ Area{\small_{(Triangle)}} = \sqrt{s (s - a )(s - b)(s - c)} }}}}}}}

Where :

  • ➳ S = Semi - Perimeter
  • ➳ a = Side 1
  • ➳ b = Side 2
  • ➳ c = Side 3

\qquad{\rule{150pt}{1pt}}

\blue{❒} Calculating the Area :

  • Semi - Perimeter :

{\longmapsto{\qquad{\sf{ S = \dfrac{a + b + c}{2}}}}} \\ \\ \ {\longmapsto{\qquad{\sf{ S = \dfrac{ 26 + 28 + 30}{2}}}}} \\ \\ \ {\longmapsto{\qquad{\sf{ S = \cancel\dfrac{84}{2}}}}} \\ \\ \ {\qquad{\textsf{ Semi - Perimeter of Triangle = {\blue{\sf{ 42 \: cm }}}}}}

  • Area :

{\longmapsto{\qquad{\sf{ Area =  \sqrt{s (s - a )(s - b)(s - c)} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Area = \sqrt{42 (42 - 26)(42 - 28)(42 - 30)} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Area = \sqrt{42 \times 16 \times 14 \times 12} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Area = \sqrt{ 7 \times 6 \times 16 \times 7 \times 2 \times 6 \times 2} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Area = \sqrt{ 7 \times 6 \times 2 \times \sqrt{16}} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Area = \sqrt{ 84 \times \sqrt{16}}}}}} \: \: \: \:  {\bigg\lgroup{\green{\sf{ Taking \: \sqrt{16} \: = \: 4 }}}\bigg\rgroup} \\ \\ \ {\longmapsto{\qquad{\sf{ Area = 84 \times 4 }}}} \\ \\ \ {\qquad{\textsf{ Area of the Triangle = {\red{\sf{ 336 \: cm² }}}}}}

\qquad{\rule{150pt}{1pt}}

\blue{❒} Therefore :

❝ Area of the given Triangle is 336 cm² . ❞

 \\ {{\underline{\pink{\rule{75pt}{9pt}}}}{\underline{\green{\rule{75pt}{9pt}}}}{\underline{\orange{\rule{75pt}{9pt}}}}}

Answered by Anonymous
19

Step-by-step explanation:

Given

  • If the sides of a triangle are 26 cm, 28 cm and 30 cm. Find the area of triangle.

To Find

  • Area Of Triangle

Solution

{  \qquad {\underline {\underline  {\sf{ \bold{Let}}}}}}

The sides of triangle be

  • a = 26 cm
  • b = 28 cm
  • c = 30 cm
  • Let S be the semi-perimeter of the triangle.

We Know,

\green  \bigstar { \underline {\boxed{ \sf{S= \:  \frac{ \red{a}  \green{+ b} \pink{ + c}} \purple{2} }}}}

~Putting Terms According It

   \qquad \sf \longmapsto  \pink{ \frac{26 + 28 + 30}{2} }

   \qquad \sf \longmapsto  { \frac{26 + 28 + 30}{2}  =    \red{\frac{84}{2} } =42cm }

By Heron's Formula

  \sf{Area  \small_{ (\triangle)} =  \sqrt{s(s - a)(s - b)(s - c) } }

So,

  \sf{\longmapsto \: Area  \small_{ (\triangle)} =  \sqrt{42 \times 42 - 26(42 - 28)(42 - 30  )} }

  \sf{\longmapsto \: Area  \small_{ (\triangle)} =  \sqrt{42 \times 16 \times 14 \times 12 )} }

  \sf{\longmapsto \: Area  \small_{ (\triangle)} =  \sqrt{7 \times 6 \times 16 \times 7 \times 2 \times 6 \times 2)}  = 336cm {}^{2}  }

 {\boxed {\boxed{ \sf \underline \pink{336 {}^{2}cm }}}}

Therefore,

  \sf{Area  \small_{ (\triangle )} = {\boxed {\boxed{ \sf \underline \pink{336 {}^{2}cm }}}} }

Similar questions