Math, asked by Ritanshunakhate, 3 months ago

if the sides of a triangle are 45cm,39cm and 42 cm find its are​

Answers

Answered by TheSecretGirl
45

 \Huge {\mathbf {\color{purple}{Q}{\mathfrak {\color{plum}{uestion}}}}}

If the sides of a triangle are 45cm, 39cm and 42cm find its area.

 \Huge {\mathbf {\color{Purple}{A}{\mathfrak {\color{Plum}{nswer}}}}}

Sides of a triangle are 45cm, 39cm and 42cm.

Here, a = 45cm, b = 39cm, c = 42cm

Semi perimeter of triangle = s

 \small \bf \color{royalblue}{ = (\frac{1}{2})(a + b + c)}

 \small \bf \color{royalblue}{=(\frac{1}{2})(45 + 39 + 42)}

 \large \bf \color{royalblue}{ =  \frac{126}{2} }

 \small \bf \color{royalblue}{= 63}

 \:  \:  \:

Area of a triangle

 \:  \:

 \small \bf \blue{  = \sqrt{s(s -a)(s - b)(s - c)} }

 \small \bf \blue{ =  \sqrt{63(63 - 45)(63 - 39)(63 - 42)}}

 \small \bf \blue{ =  \sqrt{63 \times 18 \times 24 \times  21} }

 \small\sf \blue{  = \sqrt{7  \times 9 \times 2 \times 9 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7}}

 \small \bf \blue{ =  \sqrt{ {7}^{2}  \times  {9}^{2} \times  {2}^{2}  \times  {2}^{2}  \times  {3}^{2}  } }

 \small \bf \blue{ = 7 \times9 \times 2 \times 2 \times 3 }

 \small {\bold {\boxed {\underline {\underline {\mathbf {\blue {\red{ 756sq.cm}}}}}}}}

 \:  \:  \:  \:

 \small \sf{∴ The \:  area  \: of  \: the \:  triangle \:  is  \: 756 sq.cm}

Answered by animaldk
0

Answer:

\huge\boxed{A_\triangle=756cm^2}

Step-by-step explanation:

We have the lengths of the sides of the triangle: 45cm, 39cm, 42cm.

Use the Heron's formula:

A_\triangle=\sqrt{s(s-a)(s-b)(s-c)}

where

a,\ b,\ c\ -\ \text{sides of a triangle}\\\\s=\dfrac{a+b+c}{2}\ -\text{half of a primeter}

Let a=45cm,\ b=39cm,\ c=42cm

Calculate s

s=\dfrac{45+39+42}{2}=\dfrac{126}{2}=63\ (cm)

Calculate the area:

A_\triangle=\sqrt{63(63-45)(63-39)(63-42)}\\\\A_\triangle=\sqrt{(63)(18)(24)(21)\\}\\\\A_\triangle=\sqrt{571,536}\\\\A_\triangle=756\ (cm^2)

Similar questions