Math, asked by preetaujla9898, 4 months ago

.If the sides of a triangle are in the ratio
1:
 \sqrt{2}
:1, show that it is a right-angled
triangle.​

Answers

Answered by Anonymous
2

Step-by-step explanation:

the sides of a triangle are in the ratio 1 : √2 : 1

suppose commun value of the ratio is k

triangle's sides are k , √2k , k

if it is a right angled triangle ,

according to Pythagoras theorem

perpendicular²+base² = hypotenuse²

if perpendicular = k

and base = k so,

k²+k² = 2k² (√2k)² = 2k²

this is proved that this is right angled triangle

Similar questions