If the simple interest on a certain sum of money for three years three times the sum then find the rate of interest per annum.
Answers
⠀⠀⠀⠀
- Simple Interest is three times the principle
- Time = 3 years
______________________
⠀⠀
- Rate = ??
______________________
⠀⠀⠀⠀
Given that Simple Interest is 3 times the principle
⠀⠀⠀⠀
If ; Principle = x
⠀⠀⠀⠀
Then ; SI = 3x
⠀⠀⠀⠀
⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀
______________________
⠀⠀⠀⠀
- Sum will amount 3 times of it in 3 years at 100% per annum
Step-by-step explanation:
\sf{\bold{\green{\underline{\underline{Given}}}}}
Given
⠀⠀⠀⠀
Simple Interest is three times the principle
Time = 3 years
______________________
\sf{\bold{\green{\underline{\underline{To\:Find}}}}}
ToFind
⠀⠀
Rate = ??
______________________
\sf{\bold{\green{\underline{\underline{Solution}}}}}
Solution
⠀⠀⠀⠀
Given that Simple Interest is 3 times the principle
⠀⠀⠀⠀
If ; Principle = x
⠀⠀⠀⠀
Then ; SI = 3x
⠀⠀⠀⠀
⠀⠀
\sf{\red{\boxed{\bold{Interest = \dfrac{Principle \times Rate \times time}{100}}}}}
Interest=
100
Principle×Rate×time
⠀⠀⠀⠀
\sf :\implies\: {\bold{3x = \dfrac{x\times R \times 3 }{100}}}:⟹3x=
100
x×R×3
⠀⠀⠀⠀
\sf :\implies\: {\bold{ R = \dfrac{3x\times 100}{3x} }}:⟹R=
3x
3x×100
⠀⠀⠀⠀
\sf :\implies\: {\bold{R = \dfrac{3\times 100}{3}}}:⟹R=
3
3×100
⠀⠀⠀⠀
\sf :\implies\: {\bold{ R = \dfrac{3 \times 100}{3} }}:⟹R=
3
3×100
⠀⠀⠀⠀
\sf :\implies\: {\bold{ R = 100\%}}:⟹R=100%
______________________
\sf{\bold{\green{\underline{\underline{Answer}}}}}
Answer
⠀⠀⠀⠀
Sum will amount 3 times of it in 3 years at 100% per annum