Math, asked by Anonymous, 19 days ago

If the sin theta + cos theta = √2 theta the value of a (cos theta - sin theta) :-

Please don't spam..!

Answers

Answered by mathdude500
8

Appropriate Question :-

\rm \: If \: sin\theta   + cos\theta   =  \sqrt{2}cos\theta  , \: then \: value \: of \: cos\theta   - sin\theta

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm \: sin\theta   + cos\theta   =  \sqrt{2}cos\theta

\rm \: sin\theta =  \sqrt{2}cos\theta  - cos\theta

\rm \: sin\theta =  (\sqrt{2}  -1) cos\theta

On rationalizing the numerator, we get

\rm \: sin\theta =  (\sqrt{2}  -1) cos\theta   \times \dfrac{ \sqrt{2} + 1 }{ \sqrt{2}  + 1}

We know,

\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}} \\

So, using this identity, we get

\rm \: sin\theta   = \dfrac{ {( \sqrt{2}) }^{2}  -  {1}^{2} }{ \sqrt{2} +  1 } \: cos\theta

\rm \: sin\theta   = \dfrac{2 - 1}{ \sqrt{2}  + 1 } \: cos\theta

\rm \: sin\theta   = \dfrac{1}{ \sqrt{2} +  1 } \: cos\theta

\rm \:  \sqrt{2}sin\theta   + sin\theta   = cos\theta

\rm\implies \:cos\theta   - sin\theta   =  \sqrt{2}sin\theta

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by Anonymous
27

\sf\red{Given:-}

  • If the sin theta + cos theta = √2 theta the value of a (cos theta - sin theta) .

\sf\red{Solution:-}

\longmapsto\rm \: {sin  \: \theta \:  +  \: cos \theta \:  =  \sqrt{2}  \: -  > \: 1  }

\longmapsto\rm{cos \:  \theta \: -  \: sin \:  \theta \:  = x  \:   -  > 2 }

Squarring on both sides :

\longmapsto\rm{ {sin}^{2}  \theta \:  +  \:  {cos}^{2}  \theta \:  +  \: 2 \: sin \theta \: . \: cos \theta}

\longmapsto\rm{1 + 2 \: sin \theta \: . \: cos \theta \:  = 2}

\longmapsto\rm \boxed{ \rm2 \: sin \theta \: . \: cos \theta \:  = 1}

Squarring on both sides :

\rm\longmapsto{ {cos}^{2} \theta \:  +  \:  {sin}^{2}  \theta \:  -  \: 2 \: cos \theta \: . \: sin \theta =  {x}^{2}  }

\longmapsto \rm{1 - (1) =  {x}^{2} }

\longmapsto \rm{ 0  =  {x}^{2} }

\longmapsto \rm \boxed{ \rm{x = 0}}

So,

\longmapsto \rm \boxed { \rm \red{cos \theta \: .  \: sin \theta = 0}}

 \rule{259mm}1mm

@Shivam

#BeBrainly

Similar questions