Math, asked by ADITYABHAIYT, 1 day ago

If the sizes of the interior angles of a pentagon are 2r, 3x", 4x, 5x° and 6x, find the largest interior angle of the pentagon.

DON'T SPAM❌
ONLY MODERATES WILL ANSWER ​

Answers

Answered by Anonymous
54

 \star \; {\underline{\boxed{\orange{\pmb{\frak{ Appropriate \; Question \; :- }}}}}}

If the Sizes of the interior angles of a pentagon are 2x° , 3x° ,4x° ,5x° and 6x° .Find the larges interior angle .

 \\ \\

 \star \; {\underline{\boxed{\green{\pmb{\frak{ Given \; :- }}}}}}

  • ∠1 = 2x
  • ∠2 = 3x
  • ∠3 = 4x
  • ∠4 = 5x
  • ∠6 = 6x

 \\ \\

 \star \; {\underline{\boxed{\pink{\pmb{\frak{ To \; Find \; :- }}}}}}

  • Measure of largest angle

 \\ \qquad{\rule{200pt}{2pt}}

 \star \; {\underline{\boxed{\purple{\pmb{\frak{ SolutioN \; :- }}}}}}

 \dag We know That :

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\blue{\sf{ Sum \; of \; Angles {\small_{(Pentagon)}} = 540° }}}}}}}}

 \\ \\

 \dag Calculating the Value of x :

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 2x^{ \circ } + 3x^{ \circ } + 4x^{ \circ } + 5x^{ \circ } + 6x^{ \circ } = 540^{ \circ } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 5x^{ \circ } + 9x^{ \circ } + 6x^{ \circ } = 540^{ \circ } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 5x^{ \circ } + 15x^{ \circ } = 540^{ \circ } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 20x^{ \circ } = 540^{ \circ } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { x = \dfrac{540}{20} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { x = \cancel\dfrac{540}{20} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\red{\pmb{\frak{ x = 27 }}}}}} \bigstar \\ \\ \\ \end{gathered}

 \\ \\

 \dag Calculating the Angles :

  • ∠1 = 2x = 2(27) = 54°
  • ∠2 = 3x = 3(27) = 81°
  • ∠3 = 4x = 4(27) = 108°
  • ∠4 = 5x = 5(27) = 135°
  • ∠5 = 6x = 6(27) = 162°

 \\ \\

 \therefore \; The largest angle is 162° .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions