Math, asked by jagdishvalvi950, 2 months ago

if the slope of the line passing through the point (2,5) and (-4,k) is 3/2, then the value of k is​

Answers

Answered by sethrollins13
80

Given :

  • Slope of the line passing through the point (2,5) and (-4,k) is 3/2 .

To Find :

  • Value of k .

Solution :

\longmapsto\tt{{x}_{1}=2}

\longmapsto\tt{{x}_{2}=-4}

\longmapsto\tt{{y}_{1}=5}

\longmapsto\tt{{y}_{2}=k}

Using Formula :

\longmapsto\tt\boxed{m=\dfrac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}}

Putting Values :

\longmapsto\tt{\dfrac{3}{2}=\dfrac{k-5}{-4-2}}

\longmapsto\tt{\dfrac{3}{2}=\dfrac{k-5}{-6}}

Cross Multiply :

\longmapsto\tt{-6(3)=2(k-5)}

\longmapsto\tt{-18=2k-10}

\longmapsto\tt{-18+10=2k}

\longmapsto\tt{-8=2k}

\longmapsto\tt{k=\cancel\dfrac{-8}{2}}

\longmapsto\tt\bf{k=-4}

So , The Value of k is -4 .

Answered by MяMαgıcıαη
393

Question :

  • If the slope of the line passing through the point (2,5) and (-4,k) is 3/2, then the value of k is?

Answer :

  • The value of k is -4

Step by step explanation :

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Using formula :

\qquad\red\bigstar\:{\underline{\boxed{\bf{\green{m = \dfrac{y_{2} - y_{1}}{x_{2} - x_{1}}}}}}}

Putting all known values :

\rightarrow\qquad\sf \dfrac{3}{2} = \dfrac{k - 5}{-4 - 2}

\rightarrow\qquad\sf \dfrac{3}{2} = \dfrac{k - 5}{-6}

By cross multiplication :

\rightarrow\qquad\sf 3 \:\times\: -6 = 2(k - 5)

\rightarrow\qquad\sf -18 = 2k - 10

\rightarrow\qquad\sf -18 + 10 = 2k

\rightarrow\qquad\sf -8 = 2k

\rightarrow\qquad\sf \dfrac{-8}{2} = k

\rightarrow\qquad\sf \dfrac{\cancel{-8}}{\cancel{2}} = k

\rightarrow\qquad{\boxed{\frak{k = \pink{-4}}}}\:\purple\bigstar

\therefore\:{\underline{\sf{Hence,\:the\:value\:of\:k\:is\:\bf{-4}\:\sf{respectively}.}}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

More to know :

  • For finding distance between two points, we use distance formula ,i.e,\sf \sqrt{\bigg(x_{2} - x_{1}\bigg)^2 + \bigg(y_{2} - y_{1}\bigg)^2}
  • For finding the ratio in which a line segment is divided by a point, we use section formula ,i.e, \sf \bigg(\dfrac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}}\:,\:\dfrac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m_{2}}\bigg)
Similar questions