Math, asked by jas3114, 11 months ago

If the slope of the line (x/a+y/b-1)+k ( x/b + y/a-1)=0 is -1 , then the value of 'k' is ​

Answers

Answered by Anonymous
27

Given \:  \: Question \: Is \:  \\  \\ ( \frac{x}{a}  +  \frac{y}{b}  - 1) + k( \frac{x}{b}  +  \frac{y}{a}  - 1) = 0 \\  \\ if \:  \: slope \: is \:  \:  \:  - 1 \:  \:  \: find \: k \\  \\  \\ Answer \:  \\  \\ The  \:given \:   equation \: can \: be \:   rewrite \: as \\  \\  ( \frac{x}{a}  +  \frac{kx}{b}  +  \frac{y}{b}  +  \frac{ky}{a}  - k - 1) = 0 \\  \\ (  \frac{1}{a}  +  \frac{k}{b} )x + ( \frac{1}{b}  +  \frac{k}{a} )y - (k + 1) = 0 \\  \\  now \:  \: slope \: of \: this \: straight \: line \: is \\  \\  \frac{ - ( \frac{1}{a} +  \frac{k}{b})  }{(  \frac{1}{b}  +  \frac{k}{a} )}  =  - 1 \\  \\ becoz \:   \: slope \: of  \: straight \: line \: having \: equation \:  \\  \\  \alpha x +  \beta y + c = 0 \\ is \:  \:  \:  \frac{ -  \alpha }{ \beta }  \\  =>  \\   \frac{ (\frac{1}{a} +  \frac{k}{b})  }{ (\frac{1}{b}  +  \frac{k}{a}) }  = 1 \\  \\ \frac{(b + ak)}{(a + bk)}  = 1 \\  \\ b + ak = a+ bk \\  \\ (ak - bk) = (a - b) \\  \\ k(a - b) = (a - b) \\  \\ k =  \frac{(a - b)}{(a - b)}  \\  \\ k = 1 \\  \\ Therefore \:  \: slope \: of \: given \: line \: is \:  - 1 \:  \: for \:  \: k = 1

Answered by sheeladhanasekaran20
0

Answer:

shall we chat

so I will answer u r question

Similar questions