If the solid is cut by a profile section plane the section plane /cutting plane is visible in
Answers
Answer:
Answer:
{\underline{\underline{\maltese\textbf{\textsf{\red{Question}}}}}}✠Question
: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)
\begin{gathered}\end{gathered}
{\underline{\underline{\maltese\textbf{\textsf{\red{Solution}}}}}}✠Solution
: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)
{: \implies{\sf\bigg({\dfrac{x - (6 \times 2)}{2}}\bigg) = \bf\bigg({\dfrac{(8 \times 3) - 2x}{3}} \bigg)}}:⟹(2x−(6×2))=(3(8×3)−2x)
{: \implies{\sf\bigg({\dfrac{x - 12}{2}}\bigg) = \bf\bigg({\dfrac{24 - 2x}{3}} \bigg)}}:⟹(2x−12)=(324−2x)
By cross multiplication
: \implies\sf{3(x - 12) = \bf{2(24 - 2x)}}:⟹3(x−12)=2(24−2x)
: \implies\sf{3x - 36 = \bf{48 - 4x}}:⟹3x−36=48−4x
: \implies\sf{4x - 3x = \bf{48 -36}}:⟹4x−3x=48−36
: \implies\sf{x = \bf{12}}:⟹x=12
{\dag{\underline{\boxed{\sf{x =12}}}}}†x=12
Hence, The value of x is 12.
\begin{gathered}\end{gathered}
{{\underline{\underline{\maltese\textbf{\textsf{\red{Verification}}}}}}}✠Verification
: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)
Substituting the value
{: \implies{\sf\bigg({\dfrac{12 - (6