Math, asked by jaffa1234, 7 months ago

If the straight line, 2x-3y+17=0 is
perpendicular to the line passing
through the points (7,17) and (15,B)
then ß equals:​

Answers

Answered by baiga4916
1

Answer:

Hope it helps you mate

Step-by-step explanation:

Given 2x−3y+17=0 ……………. (1)

is a line perpendicular to line passing through point P(7,17) & Q(15,β) then

equation of line passing throught P & Q is 

y−17=(15−7β−17)(x−7)

8y−136=βx−7β−17x+119

(7−β)x+8y−255=0 ………... (2)

Line (1) & (2) are perpendicular to each other then

m1m2=1

Product of slopes of line (1) & (2) is −1

Now,

m1=32 and m2=8β−7

m1m2=−1⇒32(48β−7)=−1

β−7=−12

β=−12+7=−5

Hence [β=−5].

Similar questions