Math, asked by nebiver918, 7 months ago

if the straight line drawn through the point P(2√3, 1) and making an angle \pi /3 with x axis, meet the line √3+y=2 at then length of PQ is
A. 10√3
B. 10/√3
C. 5/√3
D. 5√3

Answers

Answered by shreekantsingh19781
0

Answer:

sorry I have no answer

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\textsf{The straight line drawn through the point P meets another line at q}

\underline{\textsf{To find:}}

\textsf{Length of PQ}

\underline{\textsf{Solution:}}

\textsf{Finding the line passes through P:}

\textsf{Slope,}\;\mathsf{m=tan\theta}

\textsf{Slope,}\;\mathsf{m=tan\dfrac{\pi}{3}=\sqrt{3}}

\textsf{Equation of the line is}

\mathsf{y-y_1=m(x-x_1)}

\mathsf{y-1=\sqrt{3}(x-2\sqrt{3})}

\mathsf{y-1=\sqrt{3}x-6}

\mathsf{\sqrt{3}x-y-5=0}

\textsf{This line meets}\;\mathsf{\sqrt{3}x+y-2=0}

\textsf{at Q}

\textsf{Finding Q by solving}

\mathsf{\sqrt{3}x-y-5=0}

\mathsf{\sqrt{3}x+y-2=0}

\textsf{Adding,}\;\mathsf{2\sqrt{3}x-7=0}

\mathsf{x=\dfrac{7}{2\sqrt{3}}}

\textsf{From the second equation}

\mathsf{\sqrt{3}(\dfrac{7}{2\sqrt{3}})+y-2=0}

\mathsf{\dfrac{7}{2}+y-2=0}

\mathsf{\dfrac{7-4}{2}+y=0}

\mathsf{\dfrac{3}{2}+y=0}

\mathsf{y=-\dfrac{3}{2}}

\implies\mathsf{Q(\dfrac{7}{2\sqrt{3}},\,\dfrac{-3}{2})}

\textsf{Now,}

\textsf{Length of PQ}

\mathsf{=\sqrt{(2\sqrt{3}-\dfrac{7}{2\sqrt{3}})^2+(1+\dfrac{3}{2})}}

\mathsf{=\sqrt{(\dfrac{12-7}{2\sqrt{3}})^2+(\dfrac{2+3}{2})}}

\mathsf{=\sqrt{(\dfrac{5}{2\sqrt{3}})^2+(\dfrac{5}{2})}}

\mathsf{=\sqrt{\dfrac{25}{12}+\dfrac{25}{4}}}

\mathsf{=\sqrt{\dfrac{25+75}{12}}}

\mathsf{=\sqrt{\dfrac{100}{12}}}

\mathsf{=\sqrt{\dfrac{25}{3}}}

\mathsf{=\dfrac{\sqrt{25}}{\sqrt3}}

\implies\boxed{\mathsf{PQ=\dfrac{5}{\sqrt3}}}

\underline{\textsf{Answer:}}

\textsf{Option (C) is correct}

Similar questions