Math, asked by akofficial6493, 11 months ago

If the sum abd product of the zeroes of the polynomial ax^2-5x+c is equal to 10 eqch.find the values of a and c

Answers

Answered by Anonymous
70

Question

If sum and product of the zeros of the polynomial ax²-5x + c are equal to zero each,find the values of a and c

Solution

Given Polynomial,

 \sf \: p(x) = a {x}^{2}  - 5x + c

  • Sum of Zeros = 10

  • Product of Zeros = 10

Note

  • \sf Sum \ Of \ Zeros = - \dfrac{x \ coefficient }{x^2 \ coefficient} \\
  • \sf  {Product \ Of \ Zeros = \dfrac{Constant \ Term}{x^2 \ coefficient }}

According to the Question,

  • For the value of a

 \sf \:  - ( -  \dfrac{5}{a})  = 10 \\  \\  \longrightarrow \:  \sf \: a =  \dfrac{5}{10}  \\  \\  \longrightarrow \:   \boxed{\boxed{ \sf \: a =  \dfrac{1}{2} }}

  • For the value of c

 \sf \:  \dfrac{c}{a}  = 10 \\  \\  \longrightarrow \sf \:  2c = 10 \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf \: c = 5}}

Answered by Anonymous
64

\underline{ \boxed{ \mathfrak{ \huge{ \pink{Answer}}}}} \\  \\  \star \rm \:  \orange{Given} \\  \\  \implies \rm \: p(x) = a {x}^{2}  - 5x + c \\  \\ \implies \rm \: sum \: of \: zeroes = 10 \\  \\  \implies \rm \: product \: of \: zeroes = 10 \\  \\  \star \rm \:  \orange{To \: Find} \\  \\  \implies \rm \: value \: of \: a \: and \: c..... \\  \\  \star \rm \:  \orange{Formula} \\  \\  \implies \rm \: polynomial \:  {eq}^{n}  \:   \boxed{ \rm{\red{p(x) = a {x}^{2}  + bx + c}}} \\  \\  \implies \rm \: sum \: of \: zeroes =    \boxed{ \rm\blue{\frac{ - b}{a}}}  \\  \\  \implies \rm \: product \: of \: zeroes =   \boxed{ \rm{ \green{\frac{c}{a} }}} \\  \\  \star \rm \:  \orange{Calculation} \\  \\  \implies \rm \: comparing \: given \:  {eq}^{n}  \: with \: polynomial \:  {eq}^{n}  \\  \\  \rm \: we \: get \: b =  - 5 \\  \\  \leadsto \rm \: sum \: of \: zeroes =  \frac{ - b}{a}  \\  \\  \therefore \rm \: 10 =  \frac{ - ( - 5)}{a}  \\  \\  \therefore \rm \:  \boxed{ \red{ \rm{a =  \frac{1}{2} }}} \: \purple{\star} \\  \\  \leadsto \rm \: product \: of \: zeroes =  \frac{c}{a}  \\  \\  \therefore \rm \: 10 =  \frac{c}{ \frac{1}{2} }  \\  \\   \therefore \:  \boxed{ \rm{ \red{c = 5}}}\: \purple{\star}

Similar questions