Math, asked by Sherinsabu, 11 months ago

If the sum and dofference of zeros of quadratic polynomial are -3 and -10 respectively. Then find the difference of the square of zeros.​

Answers

Answered by Aloi99
40

Given:-

→Sum of Zeros=α+β=-3

→Difference of zeros=α-β=-10

To find:-

→Difference of the square of zeroes

=α²-β²?

\rule{200}{1}

Proof:-

♦Multiply both Sum and Difference of Zeroes.

→(α+β)×(α-β)=α²-β²

♦Put the Values↓

→α²-β²=-3×-10

→α²-β²=30

\rule{200}{1}

↓-OR-↓

\rule{200}{1}

α+β=-3--(1)

α-β=-10--(2)

⊗Add them⊗

2α=-13

α= \frac{-13}{2} --(3)

★Using (3) in any of the 2 equations★

 \frac{-13}{2} +β=-3

⊕Shifting α value to RHS⊕

β=-3+ \frac{13}{2}

*Cross Multiply in RHS*

β= \frac{-6+13}{2}

β= \frac{7}{2}

\rule{200}{1}

♦Now α²-β²↓

→( \frac{13}{2} )²-( \frac{7}{2}

 \frac{169-49}{4}

α²-β²→ \frac{\cancel{120}}{\cancel{4}} =30

\rule{200}{1}

Similar questions