Math, asked by gill9739, 9 months ago

If the sum and product of the zero of a quadratic polynomial are - 1 by 2 and minus 3 respectively then the required quadratic polynomial is

Answers

Answered by BrainlyPopularman
6

ANSWER :

▪︎2x² + x - 6 = 0

EXPLANATION :

GIVEN :

▪︎ Sum of roots = -(½)

▪︎ Product of roots = -3

TO FIND :

Quadratic polynomial.

SOLUTION :

▪︎ We know that a quadratic polynomial in form of Sum of roots and product of roots is –

  \\ \implies {  \boxed{ \bold{{ {x}^{2} - (sum \:  \: of \:  \: roots)x +( product \:  \: of \:  \: roots)  = 0}}}}  \\

  \\ \implies { \bold{{ {x}^{2}  -  ( -  \frac{1}{2} )x +( - 3)  = 0}}}  \\

  \\ \implies { \bold{{ {x}^{2}   +  \frac{1}{2} x  - 3  = 0}}}  \\

  \\ \implies {  \boxed{\bold{{ 2{x}^{2}   +  x  - 6  = 0}}}}  \\

VERIFICATION :

▪︎ If a quadratic equation ax² + bx + c = 0 then –

  \\  \:  \:  . \:  \: { \bold{sum \:  \: of \:  \: roots =  -  \frac{b}{a} }}  \\

  \\  \:  \:  \implies  \:  \: { \bold{ -  \frac{1}{2}  =  -  \frac{1}{2} (verified)}}  \\

  \\  \:  \:  .  \:  \: { \bold{product\:  \: of \:  \: roots =   \dfrac{c}{a} }}  \\

  \\  \:  \:  \implies \:  \: { \bold{ - 3 =   \dfrac{ - 6}{2} }}  \\

  \\  \:  \:  \implies \:  \: { \bold{ - 3 =  - 3(verified)}}  \\

Answered by Anonymous
5

______________________________

\huge\tt{GIVEN:}

  • The sum of zero of a quadratic polynomial is -1 by 2
  • The product of zero of a quadratic polynomial is -3

______________________________

\huge\tt{TO~FIND:}

  • The required polynomial

______________________________

\huge\tt{SOLUTION:}

We know,

-(sum of roots)x+ (product of roots)

x² - (-½)x + (-3) = 0

↪x² + ½x - 3 = 0

2x² + x - 6 = 0

Hence, 2x² + x - 6 = 0 would be the required polynomial

______________________________

Similar questions