Math, asked by TOMSJ22, 9 months ago

If the sum of 1st 7 terms of an aritmetic sequence is 49 and that of 17 terms is 289.
(a) Find common difference.
(b) Find 20th term.​

Answers

Answered by nirupamsaha602
0

7×7=49 & 17×17=289

Step-by-step explanation:

20×20=400

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{sum \: of \: first \: 7 \: terms \: is \: 49} \\ &\sf{sum \: of \: first \: 17 \: terms \: is \: 289} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{common \: difference} \\ &\sf{ {20}^{th}  \: term \: of \: series}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{{\underline{Formula \:  Used \::}}}}  \end{gathered}

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\blue{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2}( 2\:a\:+\:(n\:-\:1)\:d)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

  • Sₙ is the sum of first n terms.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{Solution :-  }}

\large\underline{\bold{❥︎Step :- 1 }}

\begin{gathered}\begin{gathered}\bf Let = \begin{cases} &\sf{first \: term \: be \: a}   \\ &\sf{common \: difference \: be \: d}\end{cases}\end{gathered}\end{gathered}

\bf \:  ⟼  ✬ \: S_7 \:  =  \: 49

\bf\implies \:\dfrac{ \cancel{7}}{2} (2a + (7 - 1)d) =  \cancel{49} \: 7

\bf\implies \:2a + 6d = 14

\bf\implies \: \: a + 3d \:  = 7 -  -  -  - (1)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 2 }}

\bf \:  ⟼  \:  ✬ \: S_{17} \:  = 289

\bf\implies \:\dfrac{ \cancel{17}}{2} (2a \:  + (17 - 1)d) =  \cancel{289} \: 17

\bf\implies \:2a + 16d \:  = 34

\bf\implies \:a \:  +  \: 8d = 17 -  -  -  - (2)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 3 }}

 ✬ On Subtracting equation (1) from equation (2), we get

\bf \:   \cancel{a} \:  + 8d \:  -  \cancel{a} \:  - 3d \:  =  \: 17 - 7

\bf\implies \:5d \:  =  \: 10

\bf\implies \:d \:  = 2

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 4 }}

 ✬ On substituting the value of 'd' in equation (1), we get

\bf\implies \:a \:  + 3 \times 2 = 7

\bf\implies \:a \:  =  \: 1

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 5 }}

☆ To find 20th term of AP series,

\bf \:  ⟼ a_n \:  = a \:  +  \: (n - 1)d

\bf\implies \:a_{20} \:  = 1 + 19 \times 2

\bf\implies \:a_{20} \:  = \: 39

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Hence \:  \begin{cases} &\sf{common \: difference \:  = 2} \\ &\sf{ \:a_{20} \:  = \: 39} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions