Math, asked by boss1011, 7 months ago

if the sum of 1st and 4th term in an AP is 63 and the product of their extremes is 972.Find the 7th term in the AP ?​

Answers

Answered by ajajit9217
0

Answer:

45

Step-by-step explanation:

A_{n} = a+ (n-1)d

so

    1st term A_{1} = a+ ( 1-1)d = a

    4th term A_{4} = a+ ( 4-1 ) d = a+ 3d

sum of (A_{1} + A_{4} ) = 63

             a+(a+3d) = 63

             2a + 3d = 63.. (1)            d = \frac{63-2a}{3}

product of (A_{1}+A_{4}) = 972                   now  put value of A in equation (1)

                   (a)(a+3d) = 972                2a +3d = 63

                    a^{2} + 3ad = 972                2× 27 + 3d = 63

                     a^{2} + 3 × a × \frac{63-2a}{3} = 972..(1)       54 + 3d = 63

                      a^{2} + a (63-2a) = 972                3d = 63-54 = 9

                       a^{2} + 63a -2a^{2} = 972                  d = \frac{9}{3} = 3

                        a^{2} -63a + 972 = 0

                       a^{2} - 36a - 27a + 972 =0          let A = 27, and C D = 3

                      a ( a- 36 ) - 27 ( a - 36 ) = 0     7th term A_{7} = a + ( 7-1) d

                      (a-36)(a-27) = 0                                             =  a + 6d

                          a = 27                                                         = 27 + 6×3

                                                                                              = 27 + 18

                                                                                               = 45

Similar questions