Math, asked by nnmsunildutt, 9 months ago

if the sum of 3rd and 11th term is 154 and sum of 6th ad 10th term is 162 find the sum of first 15th term​

Answers

Answered by Anonymous
54

 \large\bf\underline{Given:-}

  • Sum of 3rd and 11th term = 154
  • sum of 6th and 10th term = 162

 \large\bf\underline {To \: find:-}

  • Sum of first 15 terms.

 \huge\bf\underline{Solution:-}

 \large \bf \: T_n = a +(n-1)d

sum of 3rd and 11th term is 154

 \rm \longmapsto \: T_3 + T_{11}=154............(i) \\\\  \rm \longmapsto \: T_3 = a + 2d..........(ii)\\ \\\rm \longmapsto \:   T_{11} = a + 10d...........(iii) \\\\ \rm \: putting \: value \: of \:T_3  \: and \:  T_{11}    \: in \: eq.(ii) \: and \: (iii)\\\\ \rm \longmapsto \: (a + 2d) + (a + 10d) = 154\\ \\\rm \longmapsto \:2a + 12d = 154  \\  \\\rm \text{Dividing both side by 2} \\\\ \rm \longmapsto \:a + 6d = 77.........(iv)

And sum of 6th and 10th term is 162

 \rm \longmapsto\: T_6 + T_{10} = 162 \\\\ \rm \longmapsto\:T_6  = a + 5d ..........(v)\\ \\\rm \longmapsto\:T_{10} = a + 9d...........(vi) \\ \\\rm \: putting \: value \: of \:T_6  \: and \:  T_{10}    \: in \: eq.(v) \: and \: (vi) \\ \\\rm \longmapsto\:(a + 5d) + (a + 9d) = 162 \\ \\\rm \longmapsto\:2a + 14d = 162 \\ \\ \rm \text{Dividing both side by 2} \\ \\\rm \longmapsto\:a + 7d = 81.......(vii)

Solving eq.(iv) and (vii) .

 \rm \: a + 6d = 77 \\  \rm \: a + 7d = 81 \\  \:  -  \:  \:  \: \:   -  \:  \:  \:  \:  -  \\  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \:  \:  \:  \:  \: \:  \rm  - d \:  =  - 4 \\  \bf \:  \:  \:  \:   \:  \:  \: \: d = 4

Substituting value of d = 4 in eq. (iv)

 \rm \longmapsto \: a + 6d = 77 \\ \\ \rm \longmapsto \: a + 6 \times 4 = 77 \\ \\ \rm \longmapsto \: a + 24 = 77   \\\\  \rm \longmapsto \: a = 77 - 24 \\\\ \bf\longmapsto \: a = 53

Now, sum of first 15 terms.

 \large \bf \: S_n =  \frac{n}{2} [2a + (n - 1)d]

 \leadsto \rm \: S_{15} = \frac{15}{2}  [2 \times 53 + 14 \times 4] \\\\  \leadsto \rm \: S_{15} = \frac{15}{2}  [106 + 56] \\ \\\leadsto \rm \: S_{15} =  \frac{15}{ \cancel2} [ \cancel{162}] \\\\ \leadsto \rm \: S_{15} = 15 \times 81 \\\\ \leadsto \bf \: S_{15} = 1215

So,

Sum of 1st 15 terms is 1215.

Answered by Anonymous
12

Question:

In an AP if the sum of 3rd and 11th term is 154 and sum of 6th ad 10th term is 162. Find the sum of first 15th term.

___________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ sum \ of \ first \ 15 \ terms \ is \ 1215.}

\sf\orange{Given:}

\sf{\implies{The \ sum \ of \ 3^{rd} \ and \ 11^{th}}}

\sf{term \ is \ 154.}

\sf{\implies{The \ sum \ of \ 6^{th} \ and \ 10^{th}}}

\sf{term \ is \ 162.}

\sf\pink{To \ find:}

\sf{Sum \ of \ first \ 15 \ terms.}

\sf\green{\underline{\underline{Solution:}}}

\boxed{\sf{tn=a+(n-1)d}}

\sf{According \ to \ the \ first \ condition.}

\sf{t3+t11=154}

\sf{\therefore{(a+2d)+(a+10d)=154}}

\sf{\therefore{2a+12d=154}}

\sf{\therefore{2(a+6d)=154}}

\sf{\therefore{a+6d=\frac{154}{2}}}

\sf{\therefore{a+6d=77...(1)}}

\sf{According \ to \ the \ second \ condition.}

\sf{t6+t10=162}

\sf{\therefore{(a+5d)+(a+9d)=162}}

\sf{\therefore{2a+14d=162}}

\sf{\therefore{2(a+7d)=162}}

\sf{\therefore{a+7d=\frac{162}{2}}}

\sf{\therefore{a+7d=81...(2)}}

\sf{Subtract \ equation (1) \ from \ equation (2)}

\sf{a+7d=81}

\sf{-}

\sf{a+6d=77}

_________________

\boxed{\sf{d=4}}

\sf{Substitute \ d=4, \ in \ equation (1)}

\sf{a+6(4)=77}

\sf{\therefore{a+24=77}}

\sf{\therefore{a=77-24}}

\boxed{\sf{\therefore{a=53}}}

____________________________________

\sf{Here, \ a=53, \ d=4 \ and \ n=15}

\boxed{\sf{Sn=\frac{n}{2}[2a+(n-1)d]}}

\sf{\therefore{S15=\frac{15}{2}[2(53)+(15-1)4]}}

\sf{\therefore{S15=\frac{15}{2}[106+56]}}

\sf{\therefore{S15=\frac{15}{2}\times162}}

\sf{\therefore{S15=15\times81}}

\sf{\therefore{S15=1215}}

\sf\purple{\tt{\therefore{The \ sum \ of \ first \ 15 \ terms \ is \ 1215.}}}

Similar questions