Math, asked by bharath3331, 11 months ago

If the sum of 8 terms of an A.P. is 64 and the sum of 19 terms is 361, find the sum of n terms.

Answers

Answered by apm43
2

Answer:

hi..mate here is your answer...

 s_{8} = 64 \\  s_{19} = 361 \\ s olve =  \\  s_{8} =  \frac{8}{2} (2a + (8 - 1)d) \\ 64 = 4(2a + 7d) \\  \frac{64}{4}  = 2a + 7d \\ 16 = 2a + 7d.......eq1 \\  s_{19} =  \frac{19}{2} (2a + (19 - 1)d) \\ 361 =  \frac{19}{2} (2a + 18d) \\ 361 =  \frac{19}{2} (2(a + 9d)) \\ 361 = 19a + 171d.....eq2 \\ solve \:  \:  \: eq1 \:  \:  \:  \: and \:  \:  \: eq2 \\ 2a + 7d = 16 \\ 2a + 18d = 38 \\  d = 2 \\ from \: eq1 \\ 2a = 16 - 7(2) \\ 2a = 16 - 14 \\ 2a = 2 \\ a = 1 \\ so ...sum \: of \: n \: terms.... \\  s_{n} =  \frac{n}{2} (2a + (n - 1)d) \\  s_{n} =  \frac{n}{2} (2 + dn - d) \\  s_{n} =  \frac{n}{2} (2 + 2n - 2) \\  s_{n} =  \frac{n}{2}  \times 2n \\  s_{n} =  {n}^{2}

hope my answer helps you ..

plz...make my answer as a brainliest answer...

Similar questions