Math, asked by kunkum25, 3 months ago

if the sum of a certain number of term of the Ap 25,22,19... is 116 find the last term​

Answers

Answered by BrainlyTwinklingstar
8

Given that,

AP 25,22,19...

First term = 25

common difference = 22-25 = -3

we know that,

 \sf Sum \:  of  \: n  \: terms  =  \boxed{ \sf S_n = \dfrac{n}{2}[2a + (n-1)d]}

By substituting the given values,

 \sf S_n = \dfrac{n}{2}[2a + (n-1)d]

 \sf 116 = \dfrac{n}{2}[2(25) + (n-1)( - 3)]

 \sf 116  \times 2= n[50 - 3n + 3]

 \sf 232=  - 3 {n}^{2}  + 53n

 \sf- 3 {n}^{2}  + 53n - 232 = 0

 \sf  3 {n}^{2}   -  53n  +  232 = 0

 \sf  3 {n}^{2}   -  29n - 24n  +  232 = 0

 \sf n(3n - 29) - 8(3n - 29) = 0

 \sf (n - 8)(3n - 29) = 0

 \sf n = 8 \: (or) \:  \dfrac{29}{3}

n should be positive integer so n = 8

Last term of the AP = an = a + (n-2)d

 \sf a_n = a+ (n-1)d

 \sf a_8 = 25+ (8-1)( - 3)

 \sf a_8 = 25+ (7)( - 3)

 \sf a_8 = 25 - 21

 \boxed{ \sf a_8 = 4}

Similar questions