Math, asked by priyanshuc224, 6 months ago

If the sum of a certain number of terms starting from first term of an A.P. is 25, 22, 19, ..., is 116. Find the last term.​

Answers

Answered by aayushhada56
2

Answer:

4

Step-by-step explanation:

25+22+19+16+13+10+7+4= 116

so the last term is 4

Answered by devip649
2

Step-by-step explanation:

ANSWER

we have,

A.P. is

25,22,19......

S

n

=116

a=25

d=T

2

−T

1

d=22−25

d=−3

Then, we know that

S

n

=

2

n

(2a+(n−1)d)

⇒116=

2

n

(2×25+(n−1)×(−3))

⇒116=

2

n

(50−3n+3)

⇒116=

2

n

(53−3n)

⇒232=n(53−3n)

⇒3n

2

−53n+232=0

⇒3n

2

−(29+24)n+232=0

⇒3n

2

−29n−24n+232=0

⇒n(3n−29)−8(3n−29)=0

⇒(3n−29)(n−8)=0

If

3n−8=0

n=

3

8

(notpossible)

If

n−8=0

n=8

So,

The last term is

S

n

=

2

n

(a+l)

116=

2

8

(25+l)

116=4(25+l)

116=100+4l

116−100=4l

4l=16

l=4

Hence, the last term of this series is

4.

This is the answerANSWER

we have,

A.P. is

25,22,19......

S

n

=116

a=25

d=T

2

−T

1

d=22−25

d=−3

Then, we know that

S

n

=

2

n

(2a+(n−1)d)

⇒116=

2

n

(2×25+(n−1)×(−3))

⇒116=

2

n

(50−3n+3)

⇒116=

2

n

(53−3n)

⇒232=n(53−3n)

⇒3n

2

−53n+232=0

⇒3n

2

−(29+24)n+232=0

⇒3n

2

−29n−24n+232=0

⇒n(3n−29)−8(3n−29)=0

⇒(3n−29)(n−8)=0

If

3n−8=0

n=

3

8

(notpossible)

If

n−8=0

n=8

So,

The last term is

S

n

=

2

n

(a+l)

116=

2

8

(25+l)

116=4(25+l)

116=100+4l

116−100=4l

4l=16

l=4

Hence, the last term of this series is

4.

This is the answer

Similar questions