Math, asked by bzr1961peqsih, 1 year ago

If the sum of a number and its positive square root is 6/25,then find the number.

Answers

Answered by BEJOICE
4
Let the number be x.
Given,
x +  \sqrt{x}  =  \frac{6}{25}  \\ 25x + 25 \sqrt{x}  = 6 \\ 25x - 6 =25 \sqrt{x}   \\  {(25x - 6)}^{2}  =  {(25 \sqrt{x}) }^{2}  \\ 625 {x}^{2}  - 300x + 36 = 625x \\ 625 {x}^{2}  - 925x + 36 = 0 \\ x =  \frac{925 +  \: or \:  -  \sqrt{ {925}^{2}  - 4 \times 625 \times 36} }{2 \times 625}  \\  =  \frac{925 +  \: or \:  - 875}{1250}  = 1.44 \:  \: or \:  \: 0.04
x = 1.44 is not possible since sum of this with negative square root gives 6/25.

So the required number is 0.04
Similar questions