Math, asked by ann290, 3 months ago

If the sum of all terms of AP : -4 , -1,2,5 , ... x is 72 , find X. help please!!!​

Answers

Answered by mathdude500
3

\large\underline\blue{\bold{Given  }}

\tt \:  \longrightarrow \:  - 4 - 1  + 2 + 5 + ... + x = 72

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} (2\:a\:+\:(n\:-\:1)\:d)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

\large\underline\purple{\bold{Solution :-  }}

ʜᴇʀᴇ,

  • aₙ = x

  • a = - 4

  • d = - 1 - (- 4) = 3

  • Sₙ = 72

Step :- 1

\tt \:  \longrightarrow \: S_n = 72

\tt \:  \longrightarrow \: \dfrac{n}{2} (2a + (n - 1)d) = 72

\tt \:  \longrightarrow \: \dfrac{n}{2} (2( - 4) + (n - 1) \times 3) = 72

\tt \:  \longrightarrow \: \dfrac{n}{2} ( - 8 + 3n - 3) = 72

\tt \:  \longrightarrow \: n(3n - 11) = 144

\tt \:  \longrightarrow \:  {3n}^{2}  - 11n - 144 = 0

\tt \:  \longrightarrow \:  {3n}^{2}  - 27n + 16n - 144 = 0

\tt \:  \longrightarrow \:  3n(n - 9) + 16(n - 9) = 0

\tt \:  \longrightarrow \: (n - 9)(3n + 16) = 0

\tt \:  \longrightarrow \: n = 9 \: or \: n =  - \dfrac{16}{3}

\tt\implies \: \boxed{ \purple{ \bf \: n \:  =  \: 9}}

☆ Step :- 2

Now,

  • aₙ = x

  • a = - 4

  • d = - 1 - (- 4) = 3

  • n = 9

\tt \:  \longrightarrow \: a_n\:=\:a\:+\:(n\:-\:1)\:d

\tt \:  \longrightarrow \: x =  - 4 + (9 - 1) \times 3

\tt \:  \longrightarrow \: x =  - 4 + 8 \times 3

\tt \:  \longrightarrow \: x =  - 4 + 24

\tt\implies \: \boxed{ \red{ \bf \:  x \:  =  \: 20}}

Similar questions