Math, asked by raunaks850, 1 year ago

if the sum of first 10 terms of an a.p is 140 and the sum of first 16 terms is 320. find the sum of n terms.

Answers

Answered by saitama75
12
hence Sn=4n² as the sum of n term
Attachments:
Answered by aquialaska
36

Answer:

The Sum of n terms is n² + 4n

Step-by-step explanation:

Given: Sum of first 10 terms of an AP = 140

          Sum of first 16 term of an AP = 320

To find: Sun of n terms

Sum of n terms of an AP is given by,

S_n=\frac{n}{2}(2a+(n-1)d)

here a is first term and d is common difference

from given info,

S_{10}=\frac{10}{2}(2a+(10-1)d)

140=5(2a+9d)

2a+9d=\frac{140}{5}

2a+9d=28 .............. (1)

S_{16}=\frac{16}{2}(2a+(16-1)d)

320=8(2a+15d)

2a+15d=\frac{320}{8}

2a+15d=40 .............. (2)

Subtract eqn (1) from (2) we get,

(2a + 15d) - (2a + 9d) = 40 - 28

2a + 15d - 2a -9d = 12

6d = 12

d = 2

Now put this value in eqn (1), we get

2a + 9×2 = 28

2a + 18 = 28

2a = 28 - 18

2a = 10

a = 5

So, Sum of n term , S_n=\frac{n}{2}(2\times5+(n-1)\times2)

                                 S_n=\frac{n}{2}(10+2n-2)

                                 S_n=n(5+n-1)

                                 S_n=n(4+n)

                                 S_n=n^2+4n

Therefore, The Sum of n terms is n² + 4n

Similar questions