Math, asked by sobia6, 1 year ago

If the sum of first 14th term of am Arithmetic progression is 10 and it's 1st term is 10. Find the 20th term​

Answers

Answered by BrainlyConqueror0901
88

Answer:

\huge{\red{\boxed{\boxed{\green{\sf{a20=\frac{-120}{7}}}}}}}

Step-by-step explanation:

\huge{\red{\boxed{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}}

a1=10

S14=10

To find:

a20=?

s14 = 10 \\  = ) \frac{n}{2} (2a + (n - 1)d) = 10 \\  = ) \frac{14}{2} (2 \times 10  + (14 - 1) \times d) = 10  \\  = )7(20 + 13d) = 10 \\  = )20 + 13d =  \frac{10}{7} \\  = )13d=  \frac{10}{7}  -  \frac{20}{1}  \\ =  )13d=   \frac{10 - 140}{7} \\  = )13d =  \frac{ -130}{7}  \\ = ) d =   \frac{ - 130}{7 \times 13}  \\  = )d =  \frac{ - 10}{7} \\  \\ a20 = a + 19d \\  = )10 + 19 \times  \frac{ -10}{7}  \\  = )10 +   \frac{ - 190}{7}  \\  = ) \frac{70 - 190}{7}  \\  = ) \frac{ - 120}{7}  \\

\huge{\red{\boxed{\boxed{\green{\sf{a20=\frac{-120}{7}}}}}}}

_________________________________________

Similar questions