Math, asked by aryanrishikesh2868, 1 year ago

if the sum of first 4 terms of an AP is 40 and that of first 14 terms is280, find the sum of first n terms

Answers

Answered by shadowsabers03
9

Answer:

n^2 + 6n

Step-by-step explanation:

S_4 = 40 \\ \\ \frac{4}{2}[a_1 + a_4] = 40 \\ \\ 2[a_1 + a_4] = 40 \\ \\ a_1 + a_4 = 40 \div 2 = 20 \ \ \ \longrightarrow \ \ \ (1)


S_{14} = 280 \\ \\ \frac{14}{2}[a_1 + a_{14}] = 280 \\ \\ 7[a_1+ a_{14}] = 280 \\ \\ a_1 + a_{14} = 280 \div 7 = 40 \ \ \ \longrightarrow \ \ \ (2)


(2) - (1) \\ \\ (a_1 + a_{14}) - (a_1 + a_4) = 40 - 20 \\ \\ a_1 + a_{14} - a_1 - a_4 = 40 - 20 \\ \\ a_{14} - a_4 = 20 \\ \\ (14 - 4)d = 20 \\ \\ 10d = 20 \\ \\ d = 20 \div 10 = 2


$$From$\ (1), \\ \\ a_1 + a_4 = 20 \\ \\ a_1 + a_1 + 3d = 20 \ \ \ \ \ [a_4 = a_1 + (4 - 1)d = a_1 + 3d] \\ \\ 2a_1 + 3d = 20 \\ \\ 2a_1 + 3 \times 2 = 20 \\ \\ 2a_1 + 6 = 20 \\ \\ 2a_1 = 20 - 6 = 14 \\ \\ a_1 = 14 \div 2 = 7


S_n \\ \\ \frac{n}{2}[2a_1 + (n - 1)d] \\ \\ \frac{n}{2}[2 \times 7 + (n - 1)2] \\ \\ \frac{n}{2}[14 + 2n - 2] \\ \\ \frac{n}{2}[2n + 12] \\ \\ \frac{n}{2} \times 2[n + 6] \\ \\ n[n + 6] \\ \\ \bold{n^2 + 6n}


Thank you. Have a nice day. :-)





#adithyasajeevan

Similar questions