Math, asked by afiyanaushey29, 5 months ago

if the sum of first 7 term of an AP is 49 and that of 17 terms os 289, find the sum of the nth terms​

Answers

Answered by bgtarun2005
0

Answer:

n*n

Step-by-step explanation:

Here consider,

Sum of 7 terms of an A.P=49

By using formula which is,

S= n/2*[2a+(n-1)d]

49= 7/2*[2a+(7-1)d]

49=7/2*[2a+6d]

49=7*[a+3d]                          (we get a+3d by dividing 2a+6d by 2)

49= 7a+21d                     (divide the terms by 7 on both sides)

7= a+3d --1

Step 2: form the equation using S= n/2[2a+(n-1)d]

Sum of 17 terms = 289

289=17/2*[2a+(17-1)d]

289= 17/2 *[2a+16d]

289= 17*[a+8d]                                  (we get a+8d by dividing 2a+16d by 2)

289 = 17a+136d                          (divide the terms by 17 on both sides)

17 = a+8d --2

From 2 and 1

   17 = a+8d

(-) 7=  a+3d         (here when subtracted on both sides we need to take - as            

10 = 5d                     common)

d=10/5, therefore d = 2

we got d=2, we can keep the d value using any equation, so

a+3d=7                                             a+8d =17

=> a+3*(2)=7         or                       => a+8*(2)=17        

=> a+6=7                                          => a+16=17

=> a=7-6                                           => a=17-16

=> a= 1                                             = > a= 1

now we got a=1 and d=2, so

we need to use the formula which is

S=n/2[2a+(n-1)d]

use the values a=1 and d=2

S=n/2[2a+(n-1)*d]

S= n/2[2*(1)+(n-1)*2]

S= n/2[2+2n-2]

S= n/2[2n]                     (since 2-2=0, therefore there will be only 2n inside [])

S= n*[n]                           (here 2n is divided by 2)

Therefore S= n*n or n2

Similar questions