Math, asked by TiyaTiwari, 8 months ago

If the sum of first 7 terms of AP is 49 and that of 17 terms is 289, find the sum of first n terms

Answers

Answered by MaIeficent
6
\large\bf{\underline{\underline\red{Given:-}}}

• The sum of first 7 terms of an AP is 49

• And the sum of first 17 terms is 289.

\large\bf{\underline{\underline\blue{To\:Find:-}}}

• The sum of first n terms.

\large\bf{\underline{\underline\green{Solution:-}}}

As we know that:-

Sum of n terms is given by the formula:-

\boxed{ \rm \leadsto S_{n} = \frac{n}{2} \bigg \{2a + (n - 1)d \bigg \} }

Sum of first 7 terms:-

• n = 7

\rm S_{7} = 49

\rm \implies S_{7} = \dfrac{7}{2} \bigg \{2a + (7 - 1)d \bigg \}

\rm \implies 49= \dfrac{7}{2} \bigg \{2a + 6d \bigg \}

\rm \implies 49 \times \dfrac{2}{7} = 2a + 6d

\rm \implies 7 \times 2 = 2a + 6d

\rm \implies 2a + 6d = 14

\rm \implies a + 3d = 7.......(i)

Sum of 17 terms:-

• n = 17

\rm S_{17} = 289

\rm \implies S_{17} = \dfrac{17}{2} \bigg \{2a + (17 - 1)d \bigg \}

\rm \implies 289= \dfrac{17}{2} \bigg \{2a + 16d \bigg \}

\rm \implies 289 \times \dfrac{2}{17} = 2a + 16d

\rm \implies 17 \times 2 = 2a + 16d

\rm \implies 2a + 16d = 34

\rm \implies a + 8d = 17.......(ii)

Adding equation (i) and (ii)

\rm \: \: \: \not a + 8d = 17

\rm - \not a - 3d = -7
________________
\rm \implies 8d - 3d = 17 - 7

\rm \implies 5d = 10

\rm \implies d = 2

Substituting d = 2 in equation (i)

\rm \implies a + 3 d = 7

\rm \implies a + 3 (2) = 7

\rm \implies a + 6 = 7

 \rm \implies a = 1

We have :- d = 2 and a = 1

Sum of n terms

{ \rm \leadsto S_{n} = \frac{n}{2} \bigg \{2a + (n - 1)d \bigg \} }

\rm \implies S_{n} = \dfrac {n}{2} \bigg \{2 \times 1 + (n - 1)2 \bigg \}

\rm \implies S_{n} = \dfrac {n}{2} \bigg \{2 + 2n - 2 \bigg \}

\rm \implies S_{n} = \dfrac { {2n}^{2} }{2}

\rm \implies S_{n} = { {n}^{2} }

 \large \boxed{\rm \therefore Sum \: of \: n \: terms \:= { {n}^{2} } }
Answered by Anonymous
7

\bf\huge\blue{\underline{\underline{ Question : }}}

If the sum of first 7 terms of AP is 49 and that of 17 terms is 289, find the sum of first n terms.

\bf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

\tt \rightarrow Sum\:of\:First\:7\:terms\:of\:AP = 49

  • \tt S_{7} = 49

\tt \rightarrow Sum\:of\:First\:17\:terms\:of\:AP = 289

  • \tt S_{17} = 289

To find,

\tt \rightarrow Sum\:of\:First\:n\:terms\:of\:an\:AP.

Formula :

Sum of first n terms of an AP is :

\boxed{\rm{\red{ S_{n} = \cfrac{n}{2} \Bigg [ 2a + (n-1)d \Bigg] }}}

Let,

◼ ᴄᴀsᴇ - 1 :-

  • S7 = 49
  • n = 7

\sf \implies 49 = \cfrac{7}{2} \Bigg [ 2a + (7-1)d \Bigg ]

\sf \implies \cancel{49} \times \cfrac{2}{\cancel{7}} = 2a + 6d

\sf \implies 7 \times 2 = 2a + 6d

\sf \implies 2a + 6d = 14

\sf \implies 2(a + 3d)=14

\sf \implies a + 3d= \cancel{\cfrac{14}{2}}

\sf \implies a + 3d = 7 .....(1)

◼ ᴄᴀsᴇ - 2 :-

  • S17 = 289
  • n = 17

\sf \implies 289 = \cfrac{17}{2} \Bigg[ 2a + (17 - 1)d \Bigg]

\sf \implies \cancel{289} \times \cfrac{2}{\cancel{17}} = 2a + 16d

\sf \implies 17 \times 2= 2a + 16d

\sf \implies 2a + 16d = 34

\sf \implies 2(a + 8d) = 34

\sf \implies a + 8d= \cancel{\cfrac{34}{2}}

\sf \implies a+8d = 17 ..... (2)

  • Subtract (1) & (2). We get,

\sf \implies - 5d = -10

\sf \implies d =\cancel{\cfrac{ -10}{-5}}

\sf \implies d = 2

  • Substitute the value of d in (1).

\sf \implies a + 3(2)=7

\sf \implies a + 6=7

\sf \implies a = 7-6

\sf \implies a = 1

Verification,

  • Substitute the values of a & d in (1), to get LHS = RHS.

LHS =

\sf \leadsto 1 + 3(2)

\sf \leadsto 1 + 6

\sf \leadsto 7

Since,LHS = RHS. Hence,it was verified.

Now,

We have the terms :-

  • a = 1
  • d = 2

Now, we can find out the sum of n terms of an AP.

\sf \implies S_{n} = \cfrac{n}{2} \Bigg[ 2(1)+(n-1)2 \Bigg]

\sf \implies S_{n} = \cfrac{n}{2} \Bigg[ 2+2n-2 \Bigg]

\sf \implies S_{n} = \cfrac{n}{2} \Bigg[ 2n \Bigg]

\sf \implies S_{n} = \cfrac{\cancel{2}n^{2}}{\cancel{2}}

\sf \implies S_{n} = n^{2}

\underline{\boxed{\rm{\purple{\therefore Sum\:of\:n\:terms\:of\:an\:AP\:is\:n^{2}.}}}}\:\orange{\bigstar}

More Information,

\boxed{\begin{minipage}{5 cm} AP Formulae   \\ \\$:  \implies a_{n} = a + (n - 1)d \\ \\ :\implies S_{n} = \frac{n}{2} [ 2a + (n - 1)d ] $ \end{minipage}}

______________________________________________________

Similar questions