Math, asked by simrashamshad, 1 month ago

if the sum of first 9 terms of an a.p is 81 and that of 15 terms 225 find the sum of first 24 terms​

Answers

Answered by SavageBlast
18

Given:-

  • Sum of first 9 terms of an A.P = 81

  • Sum of first 15 terms of an A.P = 225

To Find:-

  • Sum of first 24 terms

Formula Used:-

  • {\boxed{\bf{S_n = \dfrac{n}{2}[2a+(n-1)d]}}}

Here,

  • \bf S_n = Sum of n terms

  • a = First term of the A.P

  • d = Common Difference

  • n = No. of terms in an A.P

Solution:-

According to question,

\bf :\implies\:S_9 = 81

Using Formula,

\bf :\implies\:S_n = \dfrac{n}{2}[2a+(n-1)d]

Putting values,

\sf :\implies\:81 = \dfrac{9}{2}[2a+(9-1)d]

\sf :\implies\:81\times2= 9[2a+8d]

\sf :\implies\:162= 9[2a+8d]

\sf :\implies\:2a+8d=\dfrac{162}{9}

\sf :\implies\:2a+8d=18

\sf :\implies\:a+4d=9

\sf :\implies\:a=9-4d ____{1}

And,

\bf :\implies\:S_{15}= 225

Using Formula,

\bf :\implies\:S_n = \dfrac{n}{2}[2a+(n-1)d]

Putting values,

\sf :\implies\:225 = \dfrac{15}{2}[2a+(15-1)d]

\sf :\implies\:225\times2= 15[2a+14d]

\sf :\implies\:450= 15[2a+14d]

\sf :\implies\:2a+14d=\dfrac{450}{15}

\sf :\implies\:2a+14d=30

\sf :\implies\:a+7d=15

Putting value of a,

\sf :\implies\:9-4d+7d=15

\sf :\implies\:9+3d=15

\sf :\implies\:3d=15-9

\sf :\implies\:3d=6

\sf :\implies\:d=\dfrac{6}{3}

\sf :\implies\:d=2

Putting value of d in {1},

\sf :\implies\:a=9-4\times 2

\sf :\implies\:a=9-8

\sf :\implies\:a=1

Now, Sum of First 24 terms:-

\sf :\implies\:S_{24} = \dfrac{24}{2}[2\times 1+(24-1)2]

\sf :\implies\:S_{24} = 12[2+23\times 2]

\sf :\implies\:S_{24}= 12[2+46]

\sf :\implies\:S_{24} = 12\times 48

\sf :\implies\:S_{24} = 576

Hence, The Sum of First 24 terms is 576.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions