Math, asked by yashsharmackt, 9 months ago

if the sum of first k terms of an ap is 2k+3k, then find the 2nd term​

Answers

Answered by BrainlyConqueror0901
9

CORRECT QUESTION :

If the sum of first k terms of an ap is 2k^2+3k, then find the 2nd term.

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Second\:term=9}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Sum \: of \: k \: term \: of \: A.P = 2k^{2}  + 3k\\  \\  \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Second \: term = ?

• According to given question :

 \tt \circ \:  s_{n}  =2k^{2}  + 3k  \\  \\  \tt \because \: n = 1,2,3,....\\  \\    \bold{As \: we \: know \: that} \\  \tt:  \implies  s_{1} = 2 \times  {1}^{2}  + 3 \times 1  \\  \\ \tt:  \implies  s_{1} = 2 + 3 \\  \\ \green{\tt:  \implies  s_{1} = 5 =  a_{1}} \\  \\  \bold{For \:  s_{2} \: (n = 2) :  } \\ \tt:  \implies  s_{2} = 2 \times  {2}^{2}  + 3 \times 2  \\  \\ \tt:  \implies  s_{2} = 8 + 6 \\  \\  \green{\tt:  \implies  s_{2} = 14} \\  \\  \bold{For \:  a_{2}} \\ \tt:  \implies  a_{2} = s_{2}  - s_{1}  \\  \\ \tt:  \implies  a_{2} =14 - 5\\  \\  \green{\tt:  \implies  a_{2}  = 9}

Answered by Saby123
2

 \tt{\huge{\green{Hello!!! }}}

Question :

If the sum of first k terms of an ap is 2k+3k, then find the 2nd term.

Solution :

 \tt{\red{Given\: - }}

 \tt{\purple{\leadsto{S_{k} = 2{k}^2 + 3k }}}

 \tt{\blue{\leadsto{S_{1} = 2{1}^2 + 3 = 5 }}}

 \tt{\orange{\leadsto{S_{2} = 2{2}^2 + 6 = 14 }}}

 \tt{\purple{\mapsto{a = 5 }}}

 \tt{\pink{\mapsto{d = 9 }}}

Hence ,

 \tt{ \orange{ \mapsto{A.P. =  > 5 \:, \:  14, \: 23, \: }}}........(A)

Similar questions