Math, asked by rajh4054, 8 months ago


If the sum of first m terms of an A:P is same as the sum of its first n terms (m #n), show that the sum of
its first (m + n) terms is zero.

Answers

Answered by nishantsaxena53
0

#BAL

Sum of m terms=Sum of n terms

=> m/2 * (2a + (m-1)d) = n/2 * (2a + (n-1)d)

Cancelling 2 in the denominator on both sides,

we get

m(2a + (m-1)d) - n(2a+ (n-1)d) = 0

 

2am + m^2d - md -2an -n^2d +nd =0

 

2a(m-n) + (m^2 - n^2)d -(m - n)d =0

 

2a(m-n) + ( (m + n) (m- n) ) d - (m - n )d = 0

 

Taking (m-n) common

 

 

2a + ( m + n -1) d = 0 ------------ (1)

 

 

S m+n = m+n/2( 2a + (m+n -1)d

 

we know that 2a + (m+n)d is 0 from eqn. 1

 

 

therefore S m+n = 0

Answered by TRISHNADEVI
1

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \pink{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: Given :  \: }} \\  \\  \:  \:  \text{Sum of first m terms of an A.P. is same as} \\  \text{the sum \: of first n terms, where m \: is \: not \: } \\  \text{equal \:to   n }

\underline{ \mathfrak{ \:  \: To  \:  \: show : \mapsto \: }} \\  \\  \text{Sum of first (m+n) terms is equal to zero. }

 \mathfrak{ \: Suppose,} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \text{First term of the A.P.  = a} \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \: \text{Common difference = d} \\  \\  \:  \:  \:  \:  \:  \:  \:  \: \tt{Sum \:  \:  of  \:  \: first  \:  \: m \:  \:  terms = S_m} \\  \text{And,} \\  \:  \:  \:  \:  \:  \:  \:  \:  \tt{Sum \:  \:  of \:  \:  first \:  \:  n  \:  \: terms = S_n}

 \underline{ \bold{ \:  \: A.T.Q.,  \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \huge{ \tt{S_m = S_n } }\\  \\  \tt{ \implies \:  \frac{m}{ \cancel{2}}  \{2a + (m - 1)d \} = \frac{n}{ \cancel{2}}  \{2a + (n - 1)d \} } \\  \\   \tt{ \implies \: m \{2a + (m - 1)d \} = n \{2a + (n - 1)d \}} \\  \\    \tt{ \implies \:  m \times 2a  + m \times (m - 1)d =  n\times 2a + n \times (n - 1)d} \\  \\  \tt{ \implies \: m \times 2a - n \times 2a  =  \{n \times (n - 1)d \} -  \{m \times (m- 1)d \}} \\  \\   \tt{ \implies \:2a \times (m - n)  =  \{n \times (nd - d) \} -  \{m \times (md - d) \}} \\  \\ \tt{ \implies \:2a \times ( m- n) = (n {}^{2}d - nd) - (m{}^{2}d - md)   } \\  \\  \tt{ \implies \:2a \times ( m- n) = n {}^{2}d - nd - m{}^{2}d  +  md } \\  \\  \tt{ \implies \: 2a \times (m - n) = n {}^{2}d - m{}^{2}d - nd  +md  } \\  \\  \tt{ \implies \: 2a \times (m - n) = d(n {}^{2}  - m {}^{2} ) - d(n - m)} \\  \\  \tt{ \implies \: 2a \times (m - n) = d \{( n+ m)(n  - m) \} - d(n - m)} \\  \\ \tt{ \implies \: 2a \times (m - n) = d(n - m) \{(n + m) - 1 \} } \\  \\ \tt{ \implies \: 2a \times \cancel{(m - n) }=  -  \: d  \: \cancel{(m - n)} \{(m + n) - 1 \}} \\  \\  \tt{ \implies \: 2a = -  d \{(m + n) - 1 \}} \\  \\ \tt{ \implies \: 2a +   d \{(m + n) - 1  \} = 0} \\  \\ \tt{ \implies \: 2a + \{(m + n) - 1 \} d= 0 \:  \:  \:   -  -  -  -  -  > (1)}

 \mathfrak{ \:Now, \: } \\  \\  \underline{ \mathfrak{ \: Suppose, \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{The  \:  \: sum \:  \:  of \:  \:  first \:  \:  (m+n)  \:  \: terms = S_{(m+n)}}

 \tt{ \therefore{ \: S_{(m+n)} = \frac{( m+ n)}{2}[  2a +  \{(m + n) - 1 \}d}]} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{  = \frac{(m + n}{2} \times 0  \:  \:  \:  \:  \:  \:  \:  \:  \:[From \:  \: (1)] } \\  \\ \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{  =0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ \therefore \:  \: S _{(m + n)} = 0 \:  \:  \: \:  \red{ i.e.} \:  \: Sum \:  \:  of \:  \:  first \:  \: } \\ \\   \tt{ (m+n) terms  \:  \: is  \:  \: equal \:  \: to  \:  \: zero. } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \pink{\underline{ \text{ \:  \:  Showed.\:  \: }}}

Similar questions