Math, asked by shanmugapriyan2007, 16 days ago

If the sum of first m terms of an A.P. is same as the sum of its first (m+n) terms is zero.​

Answers

Answered by mathdude500
3

Appropriate Question :-

If the sum of first m terms of an A.P. is same as the sum of its first n terms, prove that sum of (m+n) terms is zero.

\large\underline{\sf{Solution-}}

Let assume that

  • First term of an AP = a

  • Common difference of an AP = d

So, According to statement,

\rm \: S_m = S_n \\

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the progression.

  • n is the no. of terms.

  • d is the common difference.

So, using this, we get

\rm \: \dfrac{m}{2} \bigg(2a + (m - 1)d \bigg)  = \dfrac{n}{2} \bigg(2a + (n - 1)d\bigg)  \\

\rm \: m \bigg(2a + (m - 1)d \bigg)  = n \bigg(2a + (n - 1)d\bigg)  \\

\rm \: 2am + m(m - 1)d  = 2an + n(n - 1)d  \\

\rm \: 2am +  {dm}^{2} - dm = 2an +  {dn}^{2} - dn  \\

\rm \: 2am +  {dm}^{2} - dm - 2an  - {dn}^{2} + dn = 0  \\

\rm \: 2a(m - n) +  {d(m}^{2} -  {n}^{2})  - d(m -n) = 0  \\

\rm \: 2a(m - n) + d(m - n)(m + n) - d(m -n) = 0  \\

\rm \:(m - n)\bigg[2a + d(m + n) - d\bigg] = 0  \\

As  \rm m  \ne  n

\bf\implies \:2a + (m + n - 1)d = 0  -  -  - (1)\\

Now, Consider

\rm \: S_{m + n} \\

\rm \:  =  \: \dfrac{m + n}{2} \bigg(2a + (m + n - 1)d\bigg)  \\

On substituting the value from equation (1), we get

\rm \:  =  \: \dfrac{m + n}{2} \times 0 \\

\rm \:  =  \: 0 \\

Hence,

\bf\implies \: S_{m + n} \:  =  \: 0 \\

\rule{190pt}{2pt}

Additional Information :-

↝ nᵗʰ term of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the progression.

  • n is the no. of terms.

  • d is the common difference.

Answered by nihasrajgone2005
1

\huge\red{A}\pink{N}\orange{S}\green{W}\blue{E}\gray{R} =

Appropriate Question :-

If the sum of first m terms of an A.P. is same as the sum of its first n terms, prove that sum of (m+n) terms is zero.

\large\underline{\sf{Solution-}} </p><p>Solution−

Let assume that

First term of an AP = a

Common difference of an AP = d

So, According to statement,

\begin{gathered}\rm \: S_m = S_n \\ \end{gathered} </p><p>S </p><p>m</p><p></p><p> =S </p><p>n</p><p>

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n terms of an arithmetic progression is,

\begin{gathered}\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}\end{gathered} </p><p>★ </p><p>S </p><p>n</p><p></p><p> = </p><p>2</p><p>n</p><p></p><p> (2a+(n−1)d)

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the progression.

n is the no. of terms.

d is the common difference.

So, using this, we get

\begin{gathered}\rm \: \dfrac{m}{2} \bigg(2a + (m - 1)d \bigg) = \dfrac{n}{2} \bigg(2a + (n - 1)d\bigg) \\ \end{gathered} </p><p>2</p><p>m</p><p></p><p> (2a+(m−1)d)= </p><p>2</p><p>n</p><p></p><p> (2a+(n−1)d)

\begin{gathered}\rm \: m \bigg(2a + (m - 1)d \bigg) = n \bigg(2a + (n - 1)d\bigg) \\ \end{gathered} </p><p>m(2a+(m−1)d)=n(2a+(n−1)d)</p><p>

\begin{gathered}\rm \: 2am + m(m - 1)d = 2an + n(n - 1)d \\ \end{gathered} </p><p>2am+m(m−1)d=2an+n(n−1)d

\begin{gathered}\rm \: 2am + {dm}^{2} - dm = 2an + {dn}^{2} - dn \\ \end{gathered} </p><p>2am+dm </p><p>2</p><p> −dm=2an+dn </p><p>2</p><p> −dn

\begin{gathered}\rm \: 2am + {dm}^{2} - dm - 2an - {dn}^{2} + dn = 0 \\ \end{gathered} </p><p>2am+dm </p><p>2</p><p> −dm−2an−dn </p><p>2</p><p> +dn=0

\begin{gathered}\rm \: 2a(m - n) + {d(m}^{2} - {n}^{2}) - d(m -n) = 0 \\ \end{gathered} </p><p>2a(m−n)+d(m </p><p>2</p><p> −n </p><p>2</p><p> )−d(m−n)=0

\begin{gathered}\rm \: 2a(m - n) + d(m - n)(m + n) - d(m -n) = 0 \\ \end{gathered} </p><p>2a(m−n)+d(m−n)(m+n)−d(m−n)=0

\begin{gathered}\rm \:(m - n)\bigg[2a + d(m + n) - d\bigg] = 0 \\ \end{gathered} </p><p>(m−n)[2a+d(m+n)−d]=0</p><p>

As \rm m \ne nm</p><p></p><p>=n

\begin{gathered}\bf\implies \:2a + (m + n - 1)d = 0 - - - (1)\\ \end{gathered} </p><p>⟹2a+(m+n−1)d=0−−−(1)</p><p>

Now, Consider

\begin{gathered}\rm \: S_{m + n} \\ \end{gathered} </p><p>S </p><p>m+n

\begin{gathered}\rm \: = \: \dfrac{m + n}{2} \bigg(2a + (m + n - 1)d\bigg) \\ \end{gathered} </p><p>= </p><p>2</p><p>m+n</p><p></p><p> (2a+(m+n−1)d)

On substituting the value from equation (1), we get

\begin{gathered}\rm \: = \: \dfrac{m + n}{2} \times 0 \\ \end{gathered} </p><p>= </p><p>2</p><p>m+n</p><p></p><p> ×0</p><p>

\begin{gathered}\rm \: = \: 0 \\ \end{gathered} </p><p>=0

Hence,

\begin{gathered}\bf\implies \: S_{m + n} \: = \: 0 \\ \end{gathered} </p><p>⟹S </p><p>m+n</p><p></p><p> =0</p><p></p><p> </p><p></p><p>\rule{190pt}{2pt}

Additional Information :-

↝ nᵗʰ term of an arithmetic progression is,

\begin{gathered}\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}\end{gathered} </p><p>★ </p><p>a </p><p>n</p><p></p><p> =a+(n−1)d</p><p></p><p> </p><p></p><p> </p><p></p><p> </p><p>,

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.
  • a is the first term of the progression.
  • n is the no. of terms.
  • d is the common difference.

Similar questions