if the sum of first m terms of an AP is n and the sum of first n terms is m, then shiw that the sum of first (m+n) terms is -(m+n).
Answers
Answered by
16
◢LET'S
●FIRST TERM OF AP = a
◢AND
●COMMON DIFFERENCE = d
__________________________________
◢THEN
__________________________________
◢AND
____________________________________
●SUBSTRACTING [Eq(2) - Eq(1)]
=> 2m-2n = [2an+n(n-1)d] - [2am+m(m-1)d]
=> 2m-2n = [2an-2am] + [n(n-1)d-m(m-1)d]
=> 2m-2n = 2a[n-m] + d[n²-n-m²+m]
=> 2m-2n = 2a[n-m] + d[(n²-m²)-(n-m)]
=> -2[n-m] = 2a[n-m] + d[(n-m)(n+m) - (n-m)]
=> -2 = 2a + d[n+m-1]
=> 2a + d[n+m-1] = -2. ________[◢Eq(3)]
__________________________________
◢NOW
_____________________[◢PROVED]
========================================
____☆☆____
●FIRST TERM OF AP = a
◢AND
●COMMON DIFFERENCE = d
__________________________________
◢THEN
__________________________________
◢AND
____________________________________
●SUBSTRACTING [Eq(2) - Eq(1)]
=> 2m-2n = [2an+n(n-1)d] - [2am+m(m-1)d]
=> 2m-2n = [2an-2am] + [n(n-1)d-m(m-1)d]
=> 2m-2n = 2a[n-m] + d[n²-n-m²+m]
=> 2m-2n = 2a[n-m] + d[(n²-m²)-(n-m)]
=> -2[n-m] = 2a[n-m] + d[(n-m)(n+m) - (n-m)]
=> -2 = 2a + d[n+m-1]
=> 2a + d[n+m-1] = -2. ________[◢Eq(3)]
__________________________________
◢NOW
_____________________[◢PROVED]
========================================
____☆☆____
Similar questions