Math, asked by ivanchris, 11 months ago

if the sum of first M terms of an ap is the same as sum of its first n terms, show that the sum of the first (M + n) term is zero. ​

Answers

Answered by shrutikumari1nov
3

Answer:

Let the first term of an AP be a and common difference be d.

According to question,

Sm= Sn

m/2{2a+(m-1)d} =n/2{2a+ (n-1)d}

2a(m-n)+{m(m-1)- n(n-1)}d=0

2a(m-n)+{(m^2-m)-(n^2-n)}d=0

2a(m-n)+{(m^2-n^2) - (m-n)}d=0

(m-n) {2a(m+n-1)d}=0

2a(m+n-1)d=0 _ (i)

Now,

S(m+n)= m+n/2{2a+(m+n-1)d

= m+n/2 ×0 [using (i)]

=0

Hence, Sum of (m+n) terms is equal to 0

Answered by TRISHNADEVI
27

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: Given :  \: }} \\  \\  \:  \:  \text{Sum of first M terms of an A.P. is same as} \\  \text{the sum \: of first n terms, where M \: is \: not \: } \\  \text{equal \:to   n }

\underline{ \mathfrak{ \:  \: To  \:  \: show : \mapsto \: }} \\  \\  \text{Sum of first (M+n) terms is equal to zero. }

 \mathfrak{ \: Suppose,} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \text{First term of the A.P.  = a} \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \: \text{Common difference = d} \\  \\  \:  \:  \:  \:  \:  \:  \:  \: \tt{Sum \:  \:  of  \:  \: first  \:  \: M \:  \:  terms = S_M} \\  \text{And,} \\  \:  \:  \:  \:  \:  \:  \:  \:  \tt{Sum \:  \:  of \:  \:  first \:  \:  n  \:  \: terms = S_n}

 \underline{ \bold{ \:  \: A.T.Q.,  \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \huge{ \tt{S_M = S_n } }\\  \\  \tt{ \implies \:  \frac{M}{ \cancel{2}}  \{2a + (M - 1)d \} = \frac{n}{ \cancel{2}}  \{2a + (n - 1)d \} } \\  \\   \tt{ \implies \: M \{2a + (M - 1)d \} = n \{2a + (n - 1)d \}} \\  \\    \tt{ \implies \:  M \times 2a  + M \times (M - 1)d =  n\times 2a + n \times (n - 1)d} \\  \\  \tt{ \implies \: M \times 2a - n \times 2a  =  \{n \times (n - 1)d \} -  \{M \times (M- 1)d \}} \\  \\   \tt{ \implies \:2a \times (M - n)  =  \{n \times (nd - d) \} -  \{M \times (Md - d) \}} \\  \\ \tt{ \implies \:2a \times ( M- n) = (n {}^{2}d - nd) - (M{}^{2}d - Md)   } \\  \\  \tt{ \implies \:2a \times ( M- n) = n {}^{2}d - nd - M{}^{2}d  +  Md } \\  \\  \tt{ \implies \: 2a \times (M - n) = n {}^{2}d - M{}^{2}d - nd  +Md  } \\  \\  \tt{ \implies \: 2a \times (M - n) = d(n {}^{2}  - M {}^{2} ) - d(n - M)} \\  \\  \tt{ \implies \: 2a \times (M - n) = d \{( n+ M)(n  - M) \} - d(n - M)} \\  \\ \tt{ \implies \: 2a \times (M - n) = d(n - M) \{(n + M) - 1 \} } \\  \\ \tt{ \implies \: 2a \times \cancel{(M - n) }=  -  \: d  \: \cancel{(M - n)} \{(M + n) - 1 \}} \\  \\  \tt{ \implies \: 2a = -  d \{(M + n) - 1 \}} \\  \\ \tt{ \implies \: 2a +   d \{(M + n) - 1  \} = 0} \\  \\ \tt{ \implies \: 2a + \{(M + n) - 1 \} d= 0 \:  \:  \:   -  -  -  -  -  > (1)}

 \mathfrak{ \:Now, \: } \\  \\  \underline{ \mathfrak{ \: Suppose, \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{The  \:  \: sum \:  \:  of \:  \:  first \:  \:  (M+n)  \:  \: terms = S_{(m+n)}}

 \tt{ \therefore{ \: S_{(M+n)} = \frac{( M+ n)}{2}[  2a +  \{(M + n) - 1 \}d}]} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{  = \frac{(M + n}{2} \times 0  \:  \:  \:  \:  \:  \:  \:  \:  \:[From \:  \: (1)] } \\  \\ \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{  =0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ \therefore \:  \: S _{(M + n)} = 0 \:  \:  \: \:  \red{ i.e.} \:  \: Sum \:  \:  of \:  \:  first \:  \: } \\ \\   \tt{ (M+n) terms  \:  \: is  \:  \: equal \:  \: to  \:  \: zero. } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{\underline{ \text{ \:  \:  Showed.\:  \: }}}

Similar questions