Math, asked by joya56657, 7 months ago

If the sum of first n,2n and 3n terms of an AP are S1,S2,S3 respectively, then prove that S3 = 3(S2-S1)​

Answers

Answered by Anonymous
36

\;\;\underline{\textbf{\textsf{ Given:-}}}

\\ \\\dashrightarrow \sf S_1=S_n

 \\\dashrightarrow   \ S_2=S_{2n}

\\ \dashrightarrow   S_3=S_{3n}

\;\;\underline{\textbf{\textsf{ To Prove :-}}}

\\ \\\dashrightarrow \sf S_3=3(S_2-S_1)

\;\;\underline{\textbf{\textsf{Formula Used   :-}}}

\boxed{\sf{\green{ S_n=\dfrac{n}{2}[2a+(n-1)d]}}}

\;\;\underline{\textbf{\textsf{ Proof  :-}}}

Here, we know

\boxed{\sf{\green{ S_n=\dfrac{n}{2}[2a+(n-1)d]}}}

Therefore,

\dashrightarrow\sf S_3=S_{3n} = \dfrac{3n}{2}[2a+(3n-1)d]\\ \\ \\ \dashrightarrow\sf S_2=S_{2n} = \dfrac{2n}{2}[2a+(2n-1)d]\\ \\ \\ \dashrightarrow\sf S_1=S_n = \dfrac{n}{2}[2a+(n-1)d]

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

To prove, we have to find the value of -

{\rm\ S_2-S_1}

Here,

\dashrightarrow\sf \bigg[ \dfrac{2n}{2}[2a+(2n-1)d] \bigg] - \bigg[ \dfrac{n}{2}[2a+(n-1)d]\bigg]\\ \\ \\\dashrightarrow\sf \bigg[ \dfrac{2n[2a+(2n-1)d]}{2}\bigg] - \bigg[ \dfrac{n[2a+n-1)d]}{2}\bigg]\\ \\ \\\dashrightarrow\sf \bigg[ \dfrac{4na+4n^2 d-2nd}{2}\bigg] -\bigg[\dfrac{2na+n^2d-nd}{2}\bigg] \\ \\ \\ \dashrightarrow\sf \bigg[\dfrac{4na+4n^2d-2nd -2na-n^2d+nd}{2}\bigg] \ \ \ \ \\\ \\ \\ \dashrightarrow\sf \bigg[\dfrac{(4na-2na)+(4n^2d-n^2d)+(-2nd+nd)}{2}\bigg]\\ \\ \\ \dashrightarrow\sf \bigg[\dfrac{2na+3n^2d-nd}{2}\bigg]\\ \\ \\ \dashrightarrow\sf \bigg[\dfrac{ n(2a+3nd-d)}{2}\bigg]\ \ \ \ \ \ \\\ \\ \\ \dashrightarrow\sf \dfrac{n[2a+(3n-1)d]}{2}\\ \\ \\ \dashrightarrow\sf \dfrac{n}{2}[2a+(3n-1)d]

\dashrightarrow\sf S_2-S_1= \dfrac{n}{2}[2a+(3n-1)d]\\ \\ \\ \dashrightarrow\sf 3\big(S_2-S_1\big)= 3\bigg(\dfrac{n}{2}[2a+(3n-1)d]\bigg)\\ \\ \\ ........eq(1)

We got

\dashrightarrow\sf S_3=S_{3n} = \dfrac{3n}{2}[2a+(3n-1)d]........eq(2)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

After comparing eq(1) and eq(2), we get

\sf S_3=3(S_2-S_1)

\;\;\underline{\textbf{\textsf{ Hence -}}}

( Proved)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions