Math, asked by khairesimmi, 7 months ago

if the sum of first n term of a n AP is 4n²-n, find the 12th term.

Answers

Answered by Vaishnavi7491
0

Answer:

I think the question will be the n term of an AP is 4n²-n, find sum of 12 th term.

please check it once

Answered by tarracharan
1

{\bold{\huge{\underline{\blue{\sf{Given:}}}}}}

{\bold{\sf{The\:sum\:of\:first\:'n'\:terms=4n²-n}}}

{\bold{\huge{\underline{\pink{\sf{To \: Find:}}}}}}

{\bold{\sf{The\:{12}^{th}\:term\:of\:AP}}}

{\bold{\huge{\underline{\red{\sf{Formula:}}}}}}

{\boxed{\sf{Sum\:of\:'n'\:terms= \frac{n}{2} (2a+(n-1)d)}}}

{\boxed{\sf{{n}^{th} \: term\:(t_n) = a+(n-1)d}}}

{\bold{\sf{Here,\: d\: is \: common\: difference}}}

{\bold{\huge{\underline{\green{\sf{Solution:}}}}}}

{\bold{\sf{\frac{n}{2} (2a+(n-1)d)=4n²-n}}}

{\bold{\sf{\frac{1}{2} (2a+(n-1)d)=4n-1}}}

{\bold{\sf{2a+(n-1)d=8n-2}}}

{\bold{\sf{2a=8n-2-nd+d}}}

________________________________

{\bold{\sf{t_n = a+(n-1)d}}}

{\bold{\sf{t_{12} = \frac{8n-2-nd+d}{2} +(n-1)d}}}

{\bold{\sf{t_{12} = \frac{8n-2-nd+d+2nd-2d}{2}}}}

{\bold{\sf{t_{12} = \frac{8n-2+nd-d}{2}}}}

{\bold{\sf{t_{12} = \frac{8(12)-2+(12)d-d}{2}}}}

{\bold{\sf{t_{12} = \frac{94+11d}{2}}}}

Similar questions